
,, OTIC F;LE COPY

_ _ Carnegie-Mellon University

*Software Engineering Institute

N4 TechnicMA Writing
00 ,for Software Engineers

N Curriculum Module SEI.CM-23
N

DTIC

17 11 0



C U R R I C U L U M M 0 D U L E SEI-CM-23

Carnegie Melon University
Software Engineeding Institute

Technical
Writing for
Software

* Engineers

Linda Levine
Linda H. Pesante
Susan B. Dunkle
Carnegie Mellon University

May 1990

Approved for public release.
Distribution unlimited.



This document was prepared for the SEI Joint Program Office. ESD/AVS, Hanscom AFB,
MA 01731.

This document has been published in the Interest of scientific and technical Information
exchange. The ideas and findings In it should not be construed as an official DoD position.

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1990 Carnegie Mellon University
Use of any trademark In this report Is not intended In any way to Infringe on the rights of
the trademark holder.

This document is available through the Defense Technical Information Center. DTIC provides access to
and transfer of scientific and technical information for DoD personnel, DoD
contractors and potential contractors, and other U.S. Government agency personnel and
their contractors. To obtain a copy, please contact DTIC directly:

Defense Technical Information Center
ATTN: FDRA
Cameron Station
Alexandria VA 22304-6145

Copies of this document are also available through the National Technical Information Service.
For Information on ordering, please contact NTIS directly:

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161



Preface

This module, which is directed specifically to software engineers, discusses the writing Capsule
process in the context ofsoftware engineering. Its focus is on the basicproblem-solving Description
activities that underlie effective writing, many of which are similar to those underlying
software development. The module draws on related work in a number of disc lines,
including rhetorical theory, discourse analysis, linguistics, and document design. It
suggests techniques for becoming an effective writer and offers criteria for evaluating
writing.

In defining the scope of this module, we had to make choices within the broad- Scope
and growing-field of technical communication. Although we recognize that sub-
jects such as oral communication and group dynamics are important for software
engineers, we have set our priority on written communication. Even then, the topic
is a large one and difficult to treat in depth here. Thus, we have limited the scope of
the module to the fundamentals of the writing process.

The module does not cover business writing (memos, proposals, etc.), oral presen-
tations, group dynamics, or project management. Although technology (from ba- Aooesston For
sic word processors to hypertext and desktop publishing systems) certainly has NTIS GRA&I
great impact on how people write, we cannot do justice to the subject within the DTIC TAB 0
limits of this module. Nor do we devote space to the characteristics of specific Unannounced 0
types of documents and other information, such as grammar rules, that can easily 3ustitcation

be found in other sources. References to these sources appear in the bibliography. By

Because we concentrate on the basics, the material in this module applies to many Distribution/
types of documents, and some of the material can be applied to oral presentations Availability Codes
as well. The module, thus, provides the foundation for studying other communica- AVa I and/or
tion topics and building further skills. Dist[ Special

SEI-CM-23 Technical Writing for Software Engineers



Philosophy Need for communication skills in engineering
Communication skills are important in every engineering discipline. Surveys by
organizations such as the American Society for Engineering Education indicate
just how critical these skills are [Olsen83, Barnum84]. Those who are not convinced
should consult the 19 references provided at the end of Chapter 1 in [Olsen83].
These references discuss the place of writing in engineering. For specific informa-
tion on software engineers' need for communication skills, see [Sullivan88].

Assumptions about writing
Ineffective writers--engineers included-often feel that writing should be easy even
though that has rarely been their experience. They may justify their difficulty in a
number of ways; for instance, unskilled writers suspect that their teachers were in-
adequate, or they blame themselves for just not having "the gift," or both. But gifts,
muses, and favorite pencils aside, conceptions of writing are finally changing. After
decades of instruction in writing and centuries of instruction in its precursor, rheto-
ric, researchers are beginning to tell us about the social and cognitive complexity of
the writing process.

This research has also revealed problematic and lingering assumptions and
"myths" about writing. Two assumptions about the writing process are especially
significant. The first views writing as an "art" and carries important consequences
for educators, who then sustain the mystique of that art and- see themselves as
facilitators more than teachers. This approach, which assumes that writing is a gift
that can't be taught, often translates into a view of writing as discovery of one's own
inner voice [Young8O]. A second assumption about the writing process sees think-
ing and writing as separate activities. Here, thinking is accorded the prestige of an
art or a science, and writing is seen as the "craftlike" translation of these ideas into
words. Related to this notion of writing as translation is a view of writing as editing.
The most limited definition calls writing the simple polishing of words, or
"wordsmithing."

Two myths concerning the written product are especially prevalent in technical
communication. First is the myth that technical writing is transparent, objective,
and fact-based writing. (Carolyn Miller's treatment of this "windowpane theory of
language" as a legacy of positivism is worth noting [Miller79]). Technical documents
are designed to report information (clearly and persuasively), but an objective tone
should not be confused with objectivity. Finally, there is the widespread belief that
following rules and/or formulas will guarantee a good product. However, a piece of
writing can be error-free and still not communicate effectively. Tichy, Kirkman,
and Young all discuss these myths about writing in greater detail, while Hoare and
Weizenbaum consider related myths about computers and programming. [Tichy88,
Kirkman70, Young80, Hoare84, Weizenbaum88]

Technical Writing for Software Engineers SEI-CM-23



There are no algorithms for writing. Since most writing, including technical writ-
ing, is concerned with probability and not formal logic, it is rhetorical and, there-
fore, not rule-driven. Thus, this module provides strategies or heuristics-not
rules-that will help software engineers become better, more self-aware writers.
These heuristics are based on research from a number of disciplines, including
psychology, rhetoric, linguistics, discourse analysis, and document design.

Our approach to writing

We believe that writing should be taught within software engineering content
courses, not in a separate, single course. If a separate technical communication
course is offered as a foundation, it must be tailored to meet the writing objectives
and needs of software engineers; for example, it should be taught in conjunction
with a software project. Students should write the kind of documents they will write
as software professionals.

Research tells us that students have difficulty applying writing skills learned in the
composition or technical writing classroom to writing in different domains. If skills
learned in the writing classroom aren't applied in the software engineering class-
room, it is unlikely that the new engineer will draw on those skills in the workplace.
Moreover, effective writing is not something that can be covered once and mas-
tered. To address these problems, we stress the need to integrate writing into the
curriculum, making it a part of each course that students take.

Our approach to writing is not art, not science, not craft, but more in the tradition
of design (See Section 3 of the annotated outline). Writing is an analytical activity.
We believe that writing skills will help individuals to be better engineers, and engi-
neering skills will help individuals to write better. Both writing and software devel-
opment are problem-solving processes requiring practitioners to perform similar
tasks; therefore, in this module, we look at the similarities between these processes.
Teaching by analogy allows us to efficiently exploit the correspondences between
the processes of writing and software development. Learning by analogy provides
our students with a powerful mechanism for applying the skills they already have
as computer scientists and software engineers. Although there is not a dovetail fit
between the two, it is useful to exploit the strong parallels.

Our focus on process, rather than on specific types of documents or on rules, also
facilitates the transfer that we see as so important. With an understanding of the
writing process, of the cognitive components that are'a part of that process, and of
rhetorical situations, software engineers will be able to communicate effectively in
the wide variety of documents that software development projects require.

While our approach is meant for application in the software community, the grow-
ing number of writing-across-the-curriculum projects also lends support for our

SEI-CM-23 Technical Writing for Software Engineers



position. The interest in these projects demonstrates that poor communication, es-
pecially ineffective writing, is being recognized as a shared concern that involves all
departments, not just the English department. All instructors teach communica-
tions skills whether or not they are aware of it, although many prefer to be unaware.
All instructors can and should evaluate their students' writing-both their written
products and their processes. Those who don't are doing their students a real-
world disservice. These students will soon be accountable to employers (not English
instructors) who will evaluate their ability both to perform and to communicate.

Acknowledge- The authors would like to thank the members of the SEI Education Program, the
ments technical writers of SEI Information Management, and the SEI librarians for their

assistance. In addition, we thank Michael Rissman and Daniel Klein for providing
technical perspective. We are especially grateful to our reviewers for their insights
and valuable suggestions: Thomas Huckin, Granville "Pcte" Jones, Patricia Lawlis,
Richard Rasala, and Rachel Spilka.

Comments on this module are solicited, and may be sent to the SEI Software Engi-
neering Curriculum Project or to the authors:

Linda Hutz Pesante Susan B. Dunkle
Software Engineering Institute 301 Warner Hall
Carnegie Mellon University Carnegie Mellon Univiversity
Pittsburgh, PA 15213 Pittsburgh, PA 15213

IV Technical Writing for Software Engineers SEI-CM-23



Technical Writing for
Software Engineers

Outline
1. The Context for Writing

1.1 Rhetorical Situation

1.2 Communication Triangle

1.3 The Aims of Discourse

1.4 Disciplinary Context

1.4.1 Disciplinary knowledge

1.4.2 Discourse communities and conventions

. 2. Views of Writing

2.1 Product-Based and Process-Based Views

2.2 Models

2.2.1 Communication models

2.2.2 Writing models

3. Analogies: Software Development and Composing

3.1 Art/Science/Design

3.2 General Correspondence Between the Disciplines

3.3 Specific Analogies: Products and Processes

3.3.1 Products

3.3.2 Processes

SEI-CM-23 Technical Writing for Software Engineers



I

4. The Writing Process

4.1 Analyzing

4.1.1 Problem definition

4.1.2 Task definition

4.1.3 Audience analysis

4.2 Planning

4.2.1 Product plan

4.2.2 Process plan

4.3 Generating Text

4.3.1 Rapid prototyping

4.3.2 Stepwise refinement and iterative enhancement

4.3.3 Spiral model

4.3.4 Reuse

4.4 Testing

4.4.1 Informal testing

4.4.2 Formal testing

4.5 Revising

4.6 Maintaining

5. The Written Product

5.1 Principles of Linguistics and Discourse Analysis

5.1.1 Global concerns

5.1.2 Local concerns

6. Other Considerations

6.1 Collaborative Writing

6.2 Document Design

2 Technical Writing for Software Engineers SEI-CM-23



. 1. The Context for Writing Annotated
1.1 Rhetorical Situation Outline
Writing does not take place in isolation but in specific contexts; moreover, writ-
ers and readers of a document are often in different circumstances, with differ-
ent goals, constraints, and conflicts. The context in which communication
takes place is called the rhetorical situation, which includes writers, readers,
and their purposes for writing and for reading [Young70]. Writers base their
decisions about content and language on their understanding of the rhetorical
situation, the discourse community they are addressing (see Section 1.4.2), and
the conventions for the kind of document they are writing. Writers who do not
take the rhetorical situation into consideration are unlikely to be effective com-
municators.

For a more detailed, theoretical discussion of the rhetorical situation, see [Bit-
zer68]. Bitzer identifies three components that are essential to the rhetorical
situation: the writer's exigence (or sense of an imperfection or problem that
needs to be addressed), the audience, and the constraints. Constraints include
what are called artistic proofs that the writer can manage (e.g., lines of reason-
ing, word choice, organization) and inartistic proofs (e.g., contracts, agree-
ments, standards) that the writer cannot control.

* 1.2 Communication Triangle

The communication triangle, or rhetorical triangle, presents the essential ele-
ments in communication [Kinneavy7l].

world

signal

encoder decoder

The encoder (writer or speaker), the decoder (reader or listener), and world
(subject matter and environment) each lie at a tip of the triangle. In the center
is the language or other signal (mode of communication). The writer and

SEI-CM-23 Technical Writing for Software Engineers



reader interact with each other and with the subject matter, the language
touches all the other elements in the triangle. These elements and their interac-
tions play a part in any communication, oral or written. See Sections 2.2 and
4.1 for further discussion.

Teaching Consideration: It is important to note that the communication
triangle does not explicitly recognize the place of purpose in language use-
purpose of the writer and the reader. This is the reason we present information
about the rhetorical situation as well as the communication triangle. If stu-
dents use the communication triangle as a model, they should be reminded to
consider the writer's purpose for writing and the reader's purpose for reading.

1.3 The Aims of Discourse
Kinneavy categorizes forms of discourse and the purposes for writing each by
considering which element in the communication triangle dominates. These
categories are not exclusive because all the elements are involved in each type
of discourse; nor are purposes as well defined as the following list may suggest.
For example, poetry calls attention to the language, but the poet may also want
to achieve originality and persuade the reader of a particular point of view-
poetry is literary discourse, but it contains elements of expressive and persua-
sive discourse. Similarly, a proposal must be persuasive, but it also contains
technical data; a technical report contains factual information, but it reflects
the choices and assumptions of the writer [Kinneavy7l].

* Literary discourse: language is the main concern, as in poetry. The
main purpose is to induce contemplation and enjoyment and to call
attention to language itself.

* Expressive discourse: the writer is the main focus, as in diaries and
journals. The main purpose is to achieve originality or to make the
writer's thoughts or feelings accessible to himself or herself.

* Persuasive discourse: the reader is the main focus, as in proposals and
essays. The main purpose for writing is to persuade, that is, to modify
the attitudes or behavior of the reader.

* Referential discourse: the subject matter is the main focus, as in scien-
tific and technical writing and news reporting. The main purpose is to
provide information about aspects of the world. Documents that sup-
port the software life cycle are forms of referential discourse.

In scientific writing, comprehensiveness is seen to be the chief characteris-
tic, as in records of scientific research. In technical writing. factuality is
seen to be the primary concern; information is selected to meet the needs of
the audience.

Technical Writing for Software Engineers SEI-CM-23



1.4 Disciplinary Context
Knowledge of a discipline and discourse communities are primary issues in
communication. The ways people communicate and their effectiveness are in-
fluenced by these issues.

1.4.1 Disciplinary knowledge
The issue of what constitutes disciplinary knowledge is a new area of re-
search in iiLetorical studies. This effort represents a need to understand
the inner workings of different disciplines or fields of study. The goal is to
make the theories, methods, and practices of those fields explicit; once they
are explicit, they can be disseminated. For discussions of the rhetoric of
science and technical writing, see [Halloran78, Miller79].

1.4.2 Discourse communities and conventions
Those who take a social, outer-directed, approach to composing empha-
size discourse (or interpretive) communities. This approach focuses on
how members of professional and academic groups share patterns of rea-
soning and language use [Bizzell82, Bruffee84, Ode185]. The term used to
describe these shared and accepted practices is discourse conventions.

Discourse conventions bind and guide members' interactions in profes-
sional and academic communities. Such conventions include: research
methods of inquiry and investigation, modes of proof, commonly held as-
sumptions, conference and publication codes, and standards. It is these
conventions that novices adopt when joining a discourse community; for
example, when students learn to think and behave like software engineers.
Doheny-Farina focuses on an interesting double interaction between con-
vention and community: he studies how "social" and organizational con-
texts affect the writing of a business plan and how the writing of that plan
affects the organization [DohenyFarina86].

1.4.2.1 Standards
The requirement to write to standards (such as IEEE standards or mil-
itary standards) is an excellent example of a discourse convention that
imposes constraints. Although standards constrain writing and should
be considered during analysis (Section 4.1), they do not eliminate rhe-
torical choices or decisions. By paying attention to audience, purpose,
and functional principles of linguistics (Section 5), a writer can write to
standards and write for readers. Two documents with roughly the same
content may be written to a standard; yet, one may be more readable
than the other [Penrose88].

1.4.2.2 Plain English
One movement that has grown up in response to problematic dis-
course conventions is the Plain English movement. This movement

SEI-CM-23 Technical Writing for Software Engineers



(which gained momentum when Plain English laws were passed during
the Carter administration) originally focused on rewriting consumer
documents such as insurance policies, loan agreements, government
publications, and instructions for using products. The influence of the
movement has spread to technical writing, where stress is being placed
on simplicity, clarity, and judicious use of jargon. This stress is evident
in most techlAical writing books, including [Olsen83, Tichy88, Wil-
liams89].

2. Views of Writing
2.1 Product-Based and Process-Based Views
TWo common approaches to writing are based on products and processes.
Product-based: This approach focuses on grammar and style and is still a
stronghold in writing education. The perspective is rule-based, relying on for-
mulas and model texts for the writer to imitate. Product-based views assume
that there are clear right and wrong answers in language usage, that if a writer
imitates an effective sample document, the imitation will be as good as the
sample.

Guidebooks on grammar and punctuation are useful, but they neglect writing
activities (analysis, planning, and others; see Section 4) that must occur before
the product can be examined at the level of these mechanical details. Similarly,
models provide helpful information about how certain documents should look
(see Section 1.4.2 Discourse communities and conventions) but they do not take
rhetorical situations into account. See [Williams89] for advice on rules: why
they exist, when to follow them, and when not to. For an interesting discussion
of rules and their source of authority, see [Miller80].
Process-based: This approach focuses on how individuals compose, and it
draws on related studies in cognitive psychology, especially problem solving.
Researchers have used think-aloud protocols of individuals performing writ-
ing tasks in order to describe the subprocesses writers engage in. Using infor-
mation from the protocols, researchers identify strategies used by expert and
novice writers. These strategies are adapted for use as learning tools in writing
classes. This approach assumes that writers can become more effective by
monitoring their writing processes, and extending and remaining aware of
their options [Flower89, Perl80, Selzer83, Sommers8O]. For further discussion
of the writing process as a design activity, see Sections 3.1 and 3.2.
Each approach has limitations and each makes a contribution to understand-
ing writing. Recently, critics have looked at how an approach that addresses
the social and cognitive aspects of composing would mediate between product-
and process-based methods [Bizzell82, Bruffee84]. E

Technical Writing for Software Engineers SEI-CM-23



* 2.2 Models

The models identified below are only a small sample. The communication
triangle, a model that takes a broad view of the factors involved in communica-
tion, is described in Section 1.2. Other models are discussed in the source texts
cited in this section.

2.2.1 Communication models
Communication models apply to all forms of communication, not just the
written form. Standard communication models show a linear progression
from one phase to the next. The Shannon-Weaver model illustrates how
information moves from a source through a transmitter and a receiver to a
destination. At midpoint, the model accounts for "noise" or distortion. The
Lasswell model handles acts of communication by posing questions: Who?
Says what? In which channel? To whom? With what effect? Both models
appear in [Schutte83, Kinneavy7l].

2.2.2 Writing models
Prescriptive: These models of the writing process resemble the waterfall
phase model and show how writing proceeds through an orderly sequence
of stages. Linear models (sometimes called stage models) show prewriting
first, then writing, and then revision. The model in [Rohman65], which
identifies these three stages, is a typical example.

Descriptive: The document design model prepared by the American Insti-
tutes for Research (AIR) is a more descriptive model, treating the general
process for all document production [Schutte83, Redish83]. However,
some critics havenoted that the model seems prescriptive in its linear pre-
sentation of predesign, design, and postdesign steps.

[Flower8l] presents a model of composing that describes the processes
and subprocesses that writers engage in. Based on their research with indi-
viduals performing think-aloud protocols while writing, the authors distin-
guish three main components: the writer's long-term memory, the task en-
vironment, and writing processes. The authors identify subareas and sub-
processes within these main components. These researchers see writing as
a recursive process because "this particular kind of embedding, in which
an entire process is embedded within a larger instance of itself, is known
technically in linguistics as recursion." In [Hayes87], the authors develop a
model to represent cognitive processes in revision. Major subprocesses in
this model are: task definition, evaluation, problem detection, problem
diagnosis, and strategy selection.

SEI-CM-23 Technical Writing for Software Engineers



Currently, researchers in rhetorical studies are trying to develop models
that account for, and describe, the social and cognitive dimensions of the
composing process [Bizzell82, Bruffee84].

3. Analogies: Software Development and Composing

This section discusses analogies that have been made between software engineer-
ing and writing. It is an introduction to a growing body of literature that explores
the similarities between the two domains. The first subsection describes a dialogue
common to both fields, one that considers these disciplines as art, science, and
design. The second notes general correspondences between the fields of software
engineering and writing; and the final subsection discusses specific analogies.

This presentation of analogies is not exhaustive. It aims, rather, to highlight key
concerns that have been most frequently addressed in the literature. Readers will
find additional similarities between software development and composing in these
and other sources.

3.1 Art/Science/Design
Ongoing discussions about whether software engineering and writing are arts
or sciences support the consideration of both fields as design disciplines. The
concept of design accounts for artistic performance, giftedness (or wizardry),
as well as the use of scientific methods to investigate and explain writing and
programming. Walton and Balestri point out the advantages of using Herbert
Simon's sense of design as problem solving [Walton87]. Simon notes that engi-
neers, like designers, are "concerned with how things ought to be-how they
ought to be in order to attain goals, and toffunction." According to Simon, "nat-
ural science is primarily descriptive, considering things as they are: the
sciences of the artificial (the man-made) are normative, concerned with how
things should be" [Simon8l].

3.2 General Correspondences Between the Disciplines

While the discussion about the art and science of software engineering and of
writing can be mediated through the concepts of design and problem solving,
disagreements about the issues are common to both disciplines [Hoare84,
Weizenbaum88, Young80]. Frequently, the disciplines are also compared with

one another. [Shore85] describes programming as a literary activity, as mathe-
matics, and as architecture. In [Walton87], the authors consider both composi-
tion and programming as design disciplines and discuss how the process of
structured programming resembles the top-down and goal-directed process
for writing purposeful prose for a target audience. [Lehman86] compares pro-
gram design and rhetoric and maintains that from an information processing

8 Technical Writing for Software Engineers SEI-CM-23



point of view, problems in rhetoric are similar to problems in programming:
"[R]hetorical solutions to these problems resemble the major tenets of struc-
tured programming and structured design."

Other critics discuss analogies in terms of approach, method, and style. For
example, in The Elements of Programming Style, Kernighan and Plauger note
that the form and approach of their book has been strongly influenced by The
Elements of Style by Strunk and White [Kernighan74, Strunk79]. Donald Knuth
develops the term literate programming to stress the connections between natu-
ral and computer languages and the need for individuals to be able to read pro-
grams [Knuth84, Bentley86a]. Gary Perlman extends this metaphor through
multilingual programming, a process to coordinate program implementation
with "the use of parameterized information for domains outside program-
ming, like documentation and user interfaces" [Perlman86].

Software engineering and writing share the debate about their status as art or
science (and the discussions about genius or wizardry growing out of this de-
bate), related methods or processes, and surrounding popular fears. In Orality
and Literacy: The Technologizing of the Word, Walter Ong notes that reserva-
tions about the inhumanity of computers match Plato's objections to writing:
that it is artificial, Unresponsive, and weakens the mind by destroying memory.
Ong also notes that with literacy, the word became increasingly a visual unit
and less an auditory sound [Ong82]. Hamlet observes a similar and related
danger and extends the argument: "documents produced with computer assis-
tance are often of lower quality than those produced by hand: they look beauti-
ful, but the content and organization suffer." To correct these problems, he
proposes a "disciplined text environment" through the use of stepwise refine-
ment and iterative enhancement methods and rule-based editors [Hamlet86].

3.3 Specific Analogies: Products and Processes

3.3.1 Products
Specific analogies between software engineering and writing usually con-
cern the processes of development. However, in some instances, analogies
can also be made between the products relating to that development. For
example, [Walton87l observes the structural similarities between the writ-
er's outline and the programmer's Warnier-Orr diagram. The hierarchical,
top-down nature of issue trees [Flower89], a modification of the traditional
outline, has a still stronger resemblance to the Warnier-Orr design tool.

Product-based analogies relate to process issues when, for example, em-
phasis is placed on the outlining technique, not the outline. Likewise, soft-
ware life cycle models and document design models are products that re-
veal similarities about how researchers (either prescriptively or descrip-

SEI-CM-23 Technical Writing for Software Engineers



tively) represent the processes of development. Hamlet's discussion of
analogies between formatting programs and assemblers is another fine ex-
ample of product/process relations. He discusses users' inability to regu-
late word processing capabilities and the resulting problems in local for-
mat details and document content [Hamlet86].

3.3.2 Processes
Of the software development methods adaptable to document develop-
ment, stepwise refinement and iterative enhancement and prototyping
have received the most attention. Separation of concerns and information
hiding have also been discussed. (See also Section 4.3.)

3.3.2.1 Stepwise refinement and iterative enhancement
Mingione notes that "documentation must be iterative to serve as sys-
tems communications within the development process." In his view,
iteration is an easier way to document because it is a "natural" funda-
mental concept in development [Mingione83]. Hamlet suggests that
"techniques and tools valuable in controlling software development be
investigated for improving document preparation." He considers top-
down iterative enhancement and stepwise refinement, and envi-
ronments controlled by rule-based editors, as the most promising. It-
erative enhancement and stepwise refinement are complementary
methods that guide modifications of, and additions to, the hierarchy
used for the prototype [Hamlet86].

3.3.2.2 Prototyping
Guillemette's comprehensive discussion of prototyping as a method
for developing documentation also notes the place of iterative-design
within the process. He identifies four steps (and a finite series of im-
plementation/revision cycles) in the prototyping approach: (1) com-
pletion of needs analysis and development of baseline documentation
required for discussion and iteration, (2) development of working doc-
umentation, (3) release of baseline documentation for testing, (4) revi-
sion based on reader/user feedback. Steps 3 and 4 are repeated until
requirements are established [Guillemette87]. In addition, user feed-
back may indicate flaws in the needs analysis of Step 1.
Rapid prototyping techniques are "techniques for constructing work-
ing models of systems rapidly and cheaply." Taylor and Standish see
this as an appropriate learning method when the ends or the means of
system requirements are unclear, or when there are changing require-
ments. The rapid development of initial versions of a system is a useful
analogy (and strategy) for developing initial versions of a document
[Taylor82].

10 Technical Writing for Software Engineers SEI-CM-23



3.3.2.3 Separation of concerns
In [Hester8l], the authors identify separation of concerns and infor-
mation hiding as key principles in their design and documentation
method. Both principles describe the same essential idea from two per-
spectives-what the authors call encapsulating all elements of each
aspect and, hence, hiding the information about each aspect. "The
principle of separation of concerns is used to structure the design doc-
umentation, and information hiding is used to guide the internal de-
sign of the software." The authors discuss the design considerations
associated with each step that the document covers. They also provide
guidelines for the preparation of these documents.

4. The Writing Process

4.1 Analyzing

4.1.1 Problem definition
Problem definition involves identifying the problem the document will ad-
dress or the need it will fulfill. For example, in analyzing the problem ad-
dressed in a technology transition plan, the writer describes how a specific
piece of technology will be moved into commercial development, how it will
solve a particular problem, and how it will fulfill the needs of a particular
organization. In order to design an effective transition plan, or any other
document, writers must identify the need for the document and explain
how the document meets that need for both themselves and their readers.

In a document, the problem definition sometimes takes the form of a tradi-
tional problem statemcnt; at other times, it takes the form of a simpler pur-
pose statement [Young7O, Mathes76]. A formal probl.in statement is most
often used when the writer determines that the reader must understand the
larger, organizational context as well as the technical issue being ad-
dressed. This statement usually includes the following: description of the
problem, questions arising out of the problem, and what the document is
designed to do in response to the problem. In contrast, a purpose state-
ment simply lets the reader know the purpose of document, without the
elaborate context; for example, "this manual describes how to. .. . "this
memo authorizes..."

Both types of statements frequently appear at the beginning of documents
because readers need to know up front what the document is designed to
do and why the writer has written it. Readers should not have to infer what
the writer intends to accomplish; if the writer is explicit, readers can more
easily process the information and are less likely to misunderstand. The

SEI-CM-23 Technical Writing for Software Engineers 11



circumstances of use will affect content decisions as well as design and pro-
duction decisions, including the size of pages and type of binding.

4.1.2 Task definition
Writers begin defining their task by identifying their goals and the con-
straints under which they will be working. Goals, which are incorporated
into the plan (see Section 4.2), include identifying what must happen before
writing can begin and during the writing process, as well as what the writer
wants to achieve with the finished text. Constraints include special char-
acteristics of the audience (see below), time, budget, the technology, or the
requirement to write to a standard (see Section 1.4.2.1).

In addition, the writer and reader each brings previous knowledge, which
affects the writer's content choices and the reader's ability to assimilate the
new information that is presented. Writers need to identify the conven-
tions and assumptions that are common (though perhaps unarticulated)
between themselves and their readers. Certain conventions are appropri-
ate-and expected-for various types of documents and discourse (see
Section 1.3). These conventions affect content, organization, word choice,
level of formality, and format. For example, a journal article does not look
like a memo; a user's manual does not look like a requirements document.
(See also Section 1.4.2.)

If the document is one of a set, the writer has another concern: How does
the current document relates to the others in the "family" of documents?
Writers also need to identify criteria for evaluating whether they succeed at
their task. These criteria can then be applied during evaluation and testing.
For more on testing, see Section 4.4.

4.1.3 Audience analysis
Writers begin audience analysis by identifying their primary audience(s)
and determining what other readers might use the document. They nLed to
analyze the readers' purpose for reading and to identify the context in
which the document will be used.

When writers create a document for their peers (the other members of their
project team, for example), their audience analysis is likely to be quite ac-
curate, particularly since ongoing interaction enables writers to refine their
understanding of their audience. However, it is more difficult to identify
the characteristics and needs of a less familiar audience, or a multiple
(mixed) audience. Useful information about audience analysis appears in
[Olsen83, Schutte83, Roundy85]. [Spilka88] specifically addresses strate-
gies for analyzing multiple audiences.

12 Technical Writing for Software Engineers SEI-CM-23



Teaching Consideration: Beware of texts that present elaborate audience
analysis guidelines with detailed checklists. This type of analysis consumes
a lot of time and does not tell the writer how to apply the results when writ-
ing. Analyses that tell the writer how to apply the results are more desir-
able; these are often the simpler methods of analysis (see [Andrews82b,
Olsen83]).

4.2 Planning

Based on their analyses, writers can develop two kinds of plans: product plans
and process plans. Because writing is not a linear activity, writers are likely to
do further analysis during the writing process, making it necessary for them to
revise their plans at later points in development [Flower89, Flower8l, Mey-
er82].

4.2.1 Product plan
A product plan is, essentially, a working sketch of the document; it de-
scribes how the document will look. In it, the writer identifies high-level
content and organization. The writer also designs the appropriate forniat
for the audience and purpose. (In one sense, standards provide part of the
product plan.) The product plan is the plan the writer makes for explaining
content to the reader; it shows how the writer will ccnmunicate the infor-
mation, including hierarchy and emphasis.

Writing experts have recommended many types of diagrams and charts to
help writers translate their ideas into product plans, including traditional
outlines and issue trees. Issue trees [Flower89] resemble Warnier-Orr dia-
grams. Since different forms work equally .well, depending on the type of
document and the writer's needs, writers should use the simplest form that
will still handle the complexity of the information. For documents requir-
ing extensive reviews during development or for documents written collab-
oratively, the type of plan may depend on what the reviewers or other writ-
ers can easily relate to.

4.2.2 Process plan
The process plan is the plan for the writer-the work plan or project plan.
It contains procedures for completing the document and for implementing
version control. In the plan, the writer determines how to achieve the goals;
overcor ..; the constraints, and resolve conflicts in the rhetorical situation
(see Section 1). It also includes such information as schedules and a list of
required reviews. For a short document, the process plan might not be
written down. More formal plans become necessary when large, complex
documents are involved and when writing is done collaboratively. Some-
times project management tools,.such as PERT and Gantt charts, are used.

0
SEI-CM-23 Technical Writing for Software Engineers 13



4.3 Generating text

Writers typically follow the nonlinear models described in Section 2.2. As they
write, they continually check their work against their original product and pro-
cess plans. They examine their problem definition and purpose statement.
They further analyze the elements in the rhetorical situation; they reconsider
the communication triangle and the interactions it reminds them of. (Again,
these activities are not necessarily formally planned or explicit; they are cogni-
tive activities that writers perform as they write.)

On occasion, a writer might work in a linear manner, following an ordered se-
quence of activities-analyze, design, generate, evaluate, revise, edit. The writ-
er makes transitions from one phase to the next, working.straight through the
document using a detailed plan (whether or not it has been put into writing).
[Selzer83] provides an example of one engineer's linear composing process and
notes that it is unusual.

Some writers, when they begin to generate text, experience a difficulty com-
monly known as writer's block. [Rose80] notes how rigid rules and inflexible
plans may prevent a writer from generatfng text. On many occasions, writers
are unable to generate text because they are concerned with local issues (such
as sentence structure, sentence order, or word choice) too early in the process
of developing a document. Strategies for avoiding writer's block include setting
manageable subtasks and scheduling them to be accomplished in a realistic
period of time. Writers also need to recognize that first drafts do not need to be
well written or properly formatted and that it is appropriate to satisfice, that is,
to accept a less than perfect expression and form, and get on with writing.
Practical advice about getting started appears in [Tichy88, Flower89]. For
more on the notion of satisficing, see [Flower89, Simon8l].

The following strategies for generating text have been adapted from the soft-
ware community. The choice of strategy may rest on individual preference, but
it is also likely to be based on the writer's analysis of the particular writing task.
The strategy can be matched to the goals and constraints of the writing project,
and choice of strategy affects both the product and process plans.

4.3.1 Rapid prototyping
In software engineering, prototyping is a technique for providing a reduced
functionality version of a software system early in its development. In writ-
ing, a prototype is a whole document with what can be called reduced func-
tionality: it contains all the essential elements of the target product, but it is
not fully developed. The prototype is the skeleton of the document without
all the elements fleshed out. The word rapid is important, too, for the proto-
type is developed without attention to the finer details. Writers construct
an early version of a document that users or peers can evaluate both infor-

14 Technical Writing for Software Engineers SEI-CM-23



mally and through formal review. Writers, thus, gain feedback early in the
writing process, before investing too much time [Guillemette86, Taylor82].

4.3.2 Stepwise refinement and iterative enhancement
Stepwise refinement and iterative enhancement involve developing a docu-
ment through ongoing drafts or iterations. Stepwise refinement is analo-
gous to providing body text for a portion of an outline that was empty. It
may also involve the creation of additional subsections. Iterative enhance-
ment involves both adding text and improving the existing text. Each itera-
tion is a successive approximation which comes closer to the final product.

This means the writer refines the document in steps, focusing on different
goals at each step and moving from large issues to more local concerns as
the document comes closer to its final version (final is defined by whatever
criteria are appropriate for that particular document). Writers remain
aware of choices they will make later while selecting certain issues to re-
solve in the present "pass" through the document. By making deliberate
choices about what to attend to at each step, writers can solve big prob-
lems before investing time on smaller matters. (See Section 4.5 for further
discussion.)

The above techniques allow for levels of completion. The writer has a com-
plete version-of increasingly higher quality-at each step of the way. If
organizational priorities shift or deadlines approach, the writer has the op-
tion of stopping at any time. The writer satisfices [Simon8l, Flower89]:
accepts good enough, not because the writer prefers less to more but be-
cause the writer has no choice. Similarly, if the document will be used for a
brief time by a few in-house people, the text need not be as polished as a
document that will be widely distributed to customers. Thus, level of quali-
ty and amount of time invested can be matched to the document's use and
the constraints of the rhetorical situation [Hamlet86, Mingione83].

4.3.3 Risk-driven approach
Following the spiral model, some writers take a risk-driven approach to
generating text, writing the hardest or riskiest parts first. By doing so, they
can identify the most difficult problems with the document. If the prob-
lems are too great, the project can be reevaluated and changed before sig-
nificant time and money are invested.

Risk analysis is one aspect of task definition (Section 4.1.2). The analysis
can expose unrealistic goals and clarify constraints; and it plays a part in
process planning, identifying possible scheduling and budget problems or
potential problems with information gathering and verification.

Many writing texts advise writing the easy parts of the document first.
This, they claim, will give the writer a sense of accomplishment early in the

SEI-CM-23 Technical Writing for Software Engineers 15



project. Although this is often good advice, it sometimes gives the writer a
false sense of accomplishment and may cost the organization time and
money when it is later discovered that the writing task was not well defined,
resulting in the whole document being discarded and the task redefined.

4.3.4 Reuse
The notion of reusable components applies to writing as well as to soft-
ware. Writers reuse parts of documents they have written before. However,
wholesale reuse of text is appropriate only if the text suits the new context,
audience, and purpose. More often, writers adapt portions of an existing
document to suit the new situation [Selzer83].

Teaching Consideration: Students should be warned of the perils of a too
liberal use of cut and paste. It is useful to give them experience in selecting
text and adapting it to a new audience or purpose.

Another aspect of reuse is the development of documents with a modular
structure containing units that can be reused. Examples are modules used
in a multivolume set of documentation or those that can move from a re-
quirements document to a specification or design document. Modules
may consist of one sentence, a paragraph, or entire sections of text. Intro-
ductory and background materials often are the portions that can be
moved from one document to another.

Reuse also relates to the development of templates, which provide the
framework of a document without constraining the linguistic choices and
without entirely limiting the content choices. Standards are a kind of tem-
plate (see Section 1.4.2.1).

4.4 Testing

4.4.1 Informal testing
Evaluation is an integral part of writing; good writers test as they go. They
continue to check their work against their plan and evaluate, for example,
whether the document addresses the problem and whether the problem
has changed. Writers also continue to ask questions such as: Does the
document meet the audience's needs? Is the organization appropriate for
the audience? Is the text cohesive? Is the tone appropriate?
Writers also give unfinished versions to others for their response on specif-
ic aspects of the document. The test-as-you-go technique significantly re-
duces the time needed for formal testing. It also improves quality because
drafts can be reviewed a number of times as they are refined, and the writer
can select a diverse group of evaluators. An evaluator is likely to recognize
gaps between chunks of information, lack of logical consistency, ambiguity
that can result in misunderstanding, and areas of unneeded redundancy
that writers, with their "conceptual closeness" to the text, often miss.

16 Technical Writing for Software Engineers SEI-CM-23



Evaluation is done on the macro level and micro level. Macro (global) is-
sues address how the document works. They include the following: Is the
problem/purpose clear? Is the document appropriate for its audience
(content, level of detail, tone)? Is the style easy to read? Is the level of
formality appropriate? Are there gaps in logic? Is there missing or inaccu-
rate information? Is the document explicit enough? Does the layout suit
the way the document will be used?

Micro (local) issues have to do with fixing the product: Is the vocabulary
appropriate? Is the word choice all right? Are any of the sentences or
paragraphs unclear or awkward? Are there any errors in grammar or
punctuation?

4.4.2 Formal testing
In addition to ongoing evaluation by the writer and by others, more formal
tests are (or should be) performed. For documents written for the public,
formal tests are made on the alpha and beta versions of the document, if
time and budget permit. Formal testing is also appropriate for critical in-
ternal documents.

Subjective tests include structured interviews (in which readers are asked
focused questions), paraphrase tests, and protocols. Verbal protocols re-
quire the subject to think aloud while reading the document; motor proto-
cols (user edits) require the subject to think aloud while performing a task
described in the text. A formal technical review by subject matter experts
is another form of subjective test.

Commonly used objective tests include readability formulas, style pro-
grams, and performance tests (speed and accuracy in performing specific
tasks based on the reader's comprehension of the text). [Duffey85] and
Selzer's paper in [Anderson83l caution against relying too heavily on read-
ability formulas.

Because writers are so familiar with the material, they risk making incor-
rect assumptions about the audience. It is difficult, for example, to deter-
mine what an inexpert audience knows about a technical subject. There-
fore, tests performed by the end user of a document provide the writer with
particularly valuable information. These tests help writers to verify that the
document meets the readers' needs, identify weaknesses in the document,
and determine how to improve it. [Atlas8l, Bond85, Barker88, Wright83]

4.5 Revising
Revision is an ongoing part of the writing process. Just as writers continue to
analyze and evaluate as they write, they continue to revise. And they may revise
their plans as well as their document. In some cases (for example, when

SEI-CM-23 Technical Writing for Software Engineers 17



requirements have changed or testing has uncovered serious problems) a revi-
sion may require a thorough redesign.

During revision, a document may go through a series of focused iterations (see
Section 4.3.2). For example, in the early drafts, the writer might concentrate on
determining whether the information is complete and accurate, and whether
the level of detail and level of difficulty are appropriate. They may look for
ways to combine pieces of information, or identify information that should be
added or excluded. In addition to relying on their own judgment, writers use
ongoing feedback from reviewers and formal test results as the basis for their
decisions about revision.

In later drafts, levels of edit become the focus. When using levels of edit, the
writer makes multiple "passes" through a document for maximum efficiency.
For example, one pass might focus on whether the tone is appropriate for the
audience. During other passes, the writer addresses other high-level issues
such as organization, logic, or cohesion. Later, the focus might be sentence
structure or word choice, and so on, down to grammar and punctuation. [01-
sen83] provides several chapters on editing and one on proofreading. See also
[Tichy88]. For a discussion of the differences between experienced and inexpe-
rienced writers, see [Sommers80].

4.6 Maintaining
Many documents produced in software organizations are organic, i.e., they are
not truly finished when they are ieleased but must change over time to reflect
changes in the software or the operation of the system. Sometimes change
pages are released to indicate local changes in the document; other times, the
entire document is rewritten and re-released to reflect major changes, describe
enhancements, or correct mistakes. If a document requires major redesign,
maintenance can be seen as a salvage operation to gather bits of usable text.

Writers are currently developing strategies for writing documents for ease of
maintenance while keeping in mind problems of version control and configura-
tion management. Reuse and modular construction are popular approaches.
See [Jones88] for an example.

5. The Written Product

5.1 Principles of Linguistics and Discourse Analysis
This section is an introduction to the vocabulary needed to talk about the fea-
tures of well-written documents and to explain problems in documents that are
not well written.

Effective writers consciously or unconsciously apply principles of linguistics
and discourse analysis when they write. Writers use these principles to gener-

18 Technical Writing for Software Engineers SEI-CM-23



ate, evaluate, and revise their text. For teachers, these principles provide a ba-
sis for evaluating student work and enable them to provide constructive feed-
back and assign grades.

Principles of linguistics and discourse analysis differ from traditional hand-
book rules of usage, grammar, and punctuation. Handbook rules tell a writer
how to avoid being wrong according to the current conventions. (See [Wil-
liams89] for a useful and realistic discussion of rules, nonrules, optional rules,
and betes noires.) In contrast, principles of linguistics and discourse analysis
help writers make choices that enable them to communicate effectively with
their readers. These principles are based on research on how readers process
information. They are applicable even when the writer must follow a template
or use a formal standard (see Section 1.4.2.1).

General references for Sections 5.1.1 and 5.1.2 are [Olsen83, Brown83], which
contain nearly all the information an instructor is likely to need. Additional
sources, when necessary, are cited within individual subsections.

5.1.1 Global concerns
Cohesion is the way elements of the text (units of thought, sentences, para-
graphs) are tied together. These explicit ties, which are part of the surface
structure of the text (see Section 5.1.2) help readers to understand the con-
nections between ideas and between parts of the document. Some ways of
achieving cohesion include hierarchical structure, parallelism, and word
choice.

Coherence, which moves beyond issues of cohesion, involves the underly-
ing semantic unity of the text. Coherence, in a sense, deals with the ties
between the text and the reader. Lessons 2 and 3 in [Williams89] describe
how writers can effectively convey meaning; that is, how they can make
their sentences work together throughout the whole document by revealing
to the reader bit by bit, in a logical sequence, the meaning that the writer
would like to convey. The author's recommendations, which include
using tightly linked sentences and paragraphs, explain how writers can in-
crease the likelihood of readers understanding and decrease their
chances of misunderstanding.

Hierarchy is important for highlighting information. [Christensen78] pro-
vides concrete information about effective sentence and paragraph struc-
ture. When material is arranged in a hierarchy that is clear to the reader,
readers' comprehension, as well as their speed of comprehension, is great-
er. One reason is that top-level content is more prominent and receives
more attention from the reader [Meyer82]. Readers call top-level informa-
tion to mind frequently as they tie in details.

SEI-CM-23 Technical Writing for Software Engineers 19



Writers identify hierarchy when they are planning a document. As they
write, test, and revise, the ways they communicate the hierarchy may
change and sometimes the hierarchy itself may need to change. Outlines
and issue trees are tools for both planning and evaluating hierarchy. Writ-
ers can derive (or have test subjects derive) an outline or issue tree from a
text to determine its completeness and the effectiveness of its arrangement
[Flower89]. See Section 4.2.1 for a discussion of product plans, including
outlines and issue trees.

Although there are other ways to highlight information (for example, lists
and typography), they have not been specifically addressed in this module.
For more information, see Huckin's paper in [Anderson83] and the refer-
ences listed in Section 6.2.

5.1.2 Local concerns
Writing sentences. Linguists refer to the meaning of a sentence as its deep
structure and call the grammar of a sentence its surface structure. The
deep structure is the idea in the writer's mind, and the surface structure is
the written sentence. Writers transform deep structures into various sur-
face forms, choosing one that communicates their meaning most effective-
ly to their readers. For information on effective sentence development, see
[Tichy88, Andrews82a].

Functional sentence perspective (FSP) is a way to approach sentences in
terms of their larger context-it provides heuristics for revising on the sen-
tence level while keeping the more global issues in mind. It is another
source of cohesion (see Section 5.1.1). Good coverage of functional sen-
tence perspective can be found in [vandeKopple82, Olsen83]. [vandeKop-
pie82] contains guidelines for revision, and [Olsen83] offers many exam-
ples and some exercises.

Grammar and punctuation. Issues of punctuation and grammar are cov-
ered in many texts and handbooks [Tichy88, Olsen83, Williams89, Chica-
go82]. Good writing should be correct. Error undermines the writer's cred-
ibility, and some readers simply will not read text that is riddled with error.
However, as Tichy points out, 'Avoidance of error does not of itself consti-
tute good writing."

When consulting handbooks, writers will find that the rules of usage
change over time, and, more confusing, authorities do not always agree on
what the rules are at any given time. For advice on dealing with this prob-
lem, see [Williams89].

Spelling. Spelling is an issue that can be handled in part by spell checkers
on word processors. However, writers should understand the limitations of

20 Technical Writing for Software Engineers SEI-CM-23



the technology; for example, a word misspelled to be another word will not
be caught. Use of a spell checker does not eliminate the need to proofread.

6. Other Considerations
The following sections note two areas of concern that are highly relevant to techni-
cal writing but move beyond the fundamentals of writing-collaboration and doc-
ument design. These sections are included as a starting point for instructors who
wish to extend their writing instruction to address these topics.

6.1 Collaborative Writing
Collaborative writing is becoming increasingly common, especially in projects
that involve large teams; and the subject is receiving new attention in writing
research. Collaboration takes a number of forms; the following are examples:

" Text is generated in "chunks" by individuals, then spliced together
later, with one person designated as editor.

* Two or three people work on a single piece of text; one also acts as a
recorder of ideas. They produce a prototype document; each contributor
reads and comments; and each edits the later drafts, performing the level
of edit appropriate to his or her strengths-from the technical expert who
verifies content to the person who checks grammar and punctuation.

* A software practitioner or group works with a technical writer, each
contributing expertise during all the activities of the writing process
described in Section 4 [Dunkle88].

For more on collaboration, see [Bruffee84, DohenyFarina86, Kraemer88].

6.2 Document Design
Document design is an "umbrella term" that covers the verbal and visual as-
pects of written documents and the ways they work together.

Document design issues can be divided into three categories, though there is
particular overlap between the last two. The following list contains a sample of
the topics in each category and pointers to appropriate references.

1. Visual aspects ofwritten language: Topics include appearance on the page
(margins, columns, length); typography; physical arrangement of verbal
cues (headings, lists, white space, etc.) [Felker8l, Olsen83, Rehe8l,
Brusaw76, Duffy81].

2. Graphic representation of information: In technical writing, the most
common are graphs, tables, and diagrams [Tufte83, Olsen83, Brusaw76].

SEI-CM-23 Technical Writing for Software Engineers 21



3. Combiningwords and graphics: Topics include graphic cues (bars, sym-
bols, etc.) page layout and formatting; deciding when to use words and
when to use graphics; understanding how written text and graphics
work together, and how people read and use them [Tufte83, Watz-
man87, Redish87].

For information about software issues specifically, see [Bentley86a, Bentley86b,
Baecker88].

0

01
22 Technical Writing for Software Engineers SEI-.CM-23



. discourse Glossary
verbal expression in speech or writing.

discourse analysis
the study of expression in speech or writing. Discourse analysis focuses on language in
use, not formal properties of language independent of purpose or function. The term
often covers research in intersecting disciplines, including sociolinguistics and psycho-
linguistics (see linguistics).

document design
a term that refers to both the verbal and visual aspects of a document and the ways they
work together. Document designers are concerned with creating documents that com-
municate clearly and are easy to use. Guidelines for document design, which are pri-
marily based on principles of cognitive psychology, take into consideration factors such
as readers' comprehension and the usability of the document.

heuristic
a guideline, not a rule, used in solving a problem or carrying out a process.

lexical cohesion
meaningful relationships between words and/or smaller word units (morphemes);
these relationships connect sentences, paragraphs, and larger units of text in ways that
tie the text together.

linguistics
the study of the nature and structure of language. Psycholinguistics is primarily con-
cerned with language comprehension. Sociolinguistics places stress on social context
and the social interactions that are a part of language use.

positivism
the theory that knowledge is based on natural phenomena as verified by empirical sci-
ence.

protocol
the results of a research procedure in which individuals are tape recorded as they think
aloud while they are performing a reading or writing task.

rhetoric
the study of the elements (including invention, arrangement, and style) used in writing
and speaking; effective expression, created by a communicator who has taken context
(including purpose and the characteristics of the audience) into consideration; the per-
suasive use of language.

satisfice
in general, to accept an adequate but less than perfect solution to a problem; in writing,
to accept a less than perfect expression or form and continue with the writing process;
to determine that a solution or expression is good enough for a given situation.

writing across the curriculum
educational position that supports the teaching of writing in courses offered by many
academic departments; the integration of writing instruction into content courses on
many topics, not only composition courses.

SEI-CM-23 Technical Writing for Software Engineers 23



24 Technical Writing for Software Engineers SEI-CM-23



* Teaching
Considerations

This module outlines a body of knowledge about writing. Although the order of Using the
topics gives the instructor an understanding of the field, it isn't the optimum or- An notated
der for teaching. The list below identifies the intended audience of each section of Outline for
the annotated outline and gives a brief explanation of its content. Note that Sec- Teaching Writing
tions 1, 4, and 5 contain the material that will help students learn to write effec-
tively; grading criteria can be drawn from Sections 4 and 5. Sections 2 and 3 are
primarily background for the instructor.

Section 1. Rhetorical Situation - teachers and students
This section discusses the larger contexts within which the writing process takes
place. Writers who don't take context into consideration are unlikely to be effec-
tive communicators.

Section 2. Views of Writing - teachers
This material, which gives a broad picture of the field, is background for teach-
ers. It has two purposes: to help them identify how our material fits into the field
in general and to provide a framework for understanding the relationships
among the references we cite.

Section 3. Analogies - teachers (primary), students (secondary)
The section is, essentially, a bibliographic essay-an introduction to what has
been written on the similarities between software development and writing. We
present the information as a starting place; we intend for teachers to extend these
analogies and, most likely, develop new ones. The analogies provide a perspective
on the writing process that will allow teachers to tailor instruction to software
engineering students.

Teachers should encourage students to explore the analogies whether or not they
assign readings from the section. By making connections between their technical
field and the field of writing, students will learn more efficiently (perhaps in both
domains). They will more easily transfer software skills to writing tasks, and they
are more likely to view writing as relevant part of their professional development.

Section 4. The Writing Process - teachers and students
* While the analogies section provides the stimulus for learning, this section pro-

vides the substance. Because the material is about doing rather than knowing, a

SEI-CM-23 Technical Writing for Software Engineers 25



hands-on, workshop approach is essential. Students will benefit most from short
lectures, much practice, and much feedback.

Section 5. The Written Product - teachers and students
Readers often know instinctively whether a document is good or bad, effective or
ineffective. The material introduced in this section enables a reader, especially
the teacher, to diagnose writing problems and find solutions. The section intro-
duces functional principles and a vocabulary for discussing why a document isn't
good and explaining how it can be better.

Objectives By the time students complete their program of study, they should have a firm
understanding of the material in Sections 1 and 5 and should have mastered most
of the material in Section 4. (One exception is the material in Section 4.4 Testing-
students need to be aware of the need for testing and know that formal tests exist,
but few instructors will have the time to teach students how to perform these
tests.)

Instruction based on the material in this module should address the objectives
listed below. It is difficult to set priorities on these objectives. In teaching writ-
ing, it's not so much a matter concentrating on some objectives and leaving others
to be achieved in other courses; all the objectives must be addressed at some lev-
el. Students who gain only content knowledge will not necessarily have learned
how to write effectively. Rather, as they learn more about writing-and receive
feedback on the writing they do-students will achieve each objective to a greater
degree.

Affective
All students should achieve the following objectives after receiving instruction
based on the material in this module:

* Realize that writing and software development are problem-solving activi-
ties, that skills employed during software development bear resemblance to
and can be used in writing.

* Appreciate the importance of writing in the software development process
and, especially, understand the problems that result from seeing documen-
tation as an add-on function rather than an integral part of the software life
cycle.

" Appreciate the importance within the writing process of analysis, planning,
testing, and revision.

" Realize that technical communication is rhetorical (i.e., that writing is done
in a context that affects writers' choices) and that simply following a formu-
la will not guarantee a good document.

* Become aware of the difficulty, complexity, and effort involved in writing a
precise and readable document.

26
Technical Writing for Software Engineers SEI-CM-23



. Knowledge/Comprehensive/Application
The objectives in this section represent the foundation for achieving the goals
listed in the next section, Analysis/Synthesis/Evaluation. Students will be able to:

* Define or describe components of the rhetorical situation and the commu-
nication triangle.

* Identify the components of their rhetorical (writing) situation: Who is the
primary audience? Who are the other audiences? What are the constraints
on the document, writer, audience? What are the goals for the document,
writer, audience?

* Apply their understanding of discourse communities to identify some of the
characteristics of the software engineering discourse community.

Analysis/Synthesis/Evaluation
Students who achieve the following objectives are likely to become effective writ-
ers in the workplace. They will be able to do the following:

* Analyze the rhetorical situation before writing a document; evaluate the
appropriateness of a draft for an identified rhetorical situation.

* Plan a document and revise that plan when necessary.

* Create an architecture for a document (that is, an organization, outline, over-
all design) and revise that structure when necessary.

* Write and revise a document, beginning with a problem definition.

* Use linguistic principles to analyze and evaluate a draft.

* Participate effectively in a peer review.

Metacognitive
The following goals have been labeled metacognitive because they identify the
ways in which students should be able to think about their own writing process.

Students will gain self-awareness about their own writing process; they. will be
able to:

* Identify the planning techniques they are using and informally evaluate the
efficiency of those techniques.

* Identify the organizational (architectural) techniques they are using and
intormally evaluate their effectiveness.

" Identify the strategies they are using to generate text, and informally evalu-
ate the effectiveness of those strategies.

, Explain their rationale for revision.

"27SEI-CM-23 Technical Writing for Software Engineers



Prerequisite For teachers: The module and the references it cites provide sufficient informa-
Knowledge tion for a software engineering instructor to incorporate writing into a course.

Although no prerequisite knowledge is required, teachers will need varying
amounts of time to prepare to teach writing. Familiarity with areas such as rhet-
oric, linguistics, and cognitive psychology will decrease the amount of prepara-
tion that will be necessary. It is helpful, recommended, but not essential to seek
advice from experienced teachers of writing.

For students: No prerequisites are required, but we assume that students have
some familiarity with software development. A previous writing course is helpful,
especially a technical writing course. Courses that focus on the process of writing
would be most helpful.

Resources Primary Texts
If students are to use only one book, we suggest [Olsen83]. It contains material on
a substantial number of the topics addressed in this module. See the bibliography
for further information about this text; a new, significantly expanded edition will
be released under a new title in mid-1990.

If students are to purchase more than one book, we recommend [Tichy88] and
[Williams89]. [Tichy88] is down-to-earth and thorough, but it doesn't contain
practice exercises. [Williams89] is equally sensible and a bit more sophisticated;
it contains exercises but is not as complete. All three books could be used
throughout the degree program and as references on the job. Inexperienced writ-
ers may find [Flower89] helpful, although they may be offended by the simplistic
language and examples that are geared to freshmen.

Supplementary Material
In addition to the recommended textbooks, we suggest that the following books
be put on reserve in the library or excerpts distributed to students: [FelkerSi,
Mathes76, Tufte83, Anderson83, Ode185]. These selections contain good supple-
mentary material for both students and teachers. [Felker8l] provides guidelines
for writing and document design, along with a brief description of the research on
which each guideline is based. The strength of [Mathes76] is in the way it ties
problem statements and audience analysis to organizational settings. We highly
recommend [Tufte83] for its information on how to present scientific and techni-
cal data in charts, tables, and graphs. [Anderson83] and [Odell85] are consid-
ered classics in the technical writing field. They include essays and reports on
research.

Another source of material is the Society for Technical Communication (STC).
The proceedings of their annual International Technical Communication Con-
ference (ITCC) contains a wealth of information on subjects such as technology

28
Technical Writing for Software Engineers SEI-CM-23



and visual arts as well as writing, editing, and teaching. Although the quality of
the contributions varies, there is more consistency among the academic sources.
The STC also publishes a journal, Technical Communication.

Other resources include the following journals: Journal of Technical Writing and
Communication, The Technical Writing Teacher, Journal of Business and Technical
Communication, and College Composition and Communication.

We believe that students should learn to write by working on the same types of Incorporating
documents they will write as software professionals. In software engineering Writing into
courses that already include these documents, instructors do not need to assign the Software
special papers. Rather, instruction will be most effective when the material in this Engineering
module is tied to the content, writing activities, and assignments that are ordi- Curriculum
narily part of the technical courses. For example, if students are asked to write a
requirements document or a project plan, that document should be the basis for
the writing instruction. (For a discussion of skill transfer, see the Philosophy sec-
tion in the preface of this module.) Criteria for grading students' work should
address the quality of the writing as well as the technical content.

We advise against covering writing in a separate course. If students do receive
instruction in a separate course, the material must be reinforced in other courses.
Only this kind of continued effort will address the problems of ineffective com-
munication.

The following sections contain suggestions on how to incorporate writing into
software engineering courses and how to evaluate student work. We offer these
suggestions as a place to begin. (Also, see [Hartman89, Rice84, Meinke87] for
examples of other teachers' experiences.) We encourage you to exploit your
knowledge of software development in order to place the material in this module
into context for your students and to develop additional analogies and examples.
You will identify more relationships and be able to develop more examples than
we provide in this module.

Providing instruction
Ongoing attention to writing issues is more effective than direct instruction with
little or no follow-up. Here is one example of what we mean by ongoing attention:
In every course students should be introduced to or reminded of the communica-
tion triangle (see Section 1 of the annotated outline). Since the communication
triangle does not explicitly address purpose, students should also be reminded
that every document has a purpose and that someone will read it. (Even class
notes are read by the person who wrote them-and many students will have had. the experience of rereading and not understanding their own notes.) This intro-
duction may take five or ten minutes of one class period. Then, when students

29
SEI-CM-23 Technical Writing for Software Engineers



must write a document, they should be asked to identify the reader, subject mat-
ter, and purpose of the document. You may ask them to write this down, or you
could ask the question-and get their answers-when you explain the assign-
ment.

If you ask students to provide written information about themselves on the first
day of class, you could begin your instruction there. The document involves a
writer (the student), a reader (you), subject matter (the information you request),
and a signal (written English language). It's up to you to explain the purpose since
you have made the request. Teaching by this example doesn't take much class
time, but it is very effective. Students who are consistently exposed to the same
kind of instruction and concerns will gradually gain an understanding of rhetori-
cal situations and skill in applying that understanding when they write.

Defining the term document
Keep in mind that document is a very broad term. All of the following are docu-
ments. They all are written for readers and to achieve a purpose.

* The information sheet you request on the first day of class, even if you

merely ask for name and user-id on an index card.

" A bulleted list identifying the requirements for a software system.

* The minutes of a planning meeting.

* The written results of a technical review.

* A summary of a journal article.

* A progress report.

When students become aware that everything they write is a "document," they
have taken the first step beyond thinking about writing only in terms of formal
papers or graded work.

Instructors should be aware, too, that every piece of writing they give to their class
is a document and that the standards they set (or do not set) are primary exam-
ples for the students. Instructors must demonstrate that they mean what they say
about quality writing. Good quality is essential for documents such as:

" Course outlines.

• Course descriptions in the catalogue.

• Homework assignment statements.

" Long-term project requirements.

* Software/document requirements.

" Administrative memos. 4
30

Technical Writing for Software Engineers SEI-CM-23



Selecting topics
It is not possible for instructors to address every writing issue in every assign-
ment. An exception might be a document written over a longer period of time; for
example, a user's guide that is assigned early in a course and is due at the end of
the course. Regardless, it is more feasible to ask students to pay attention to dif-
ferent aspects of writing at different points in the course.

Students must write drafts of their documents, so the same document can be used
to address a num5er of writing issues. For example, students might concentrate
on purpose statement and organization in one draft of a document, appropriate-
ness for audience and purpose in another, and style in another. The goal should
be to bring more and more skills to bear on the writing process.

Similarly, it is not likely-or necessary-that instructors give the same amount of
attention to each writing topic in all courses. For example, a teacher might stress
task definition and audience analysis in a course on requirements or specifica-
tions and only mention techniques for generating text.

More examples
Other examples of incorporating writing instruction into regular assignments:

a Require a written product plan for one document students normally write
for the course, or develop the plan in class before students begin writing.

* Discuss strategies for generating text. This can be done in one block of time
or by introducing one strategy at each of several class meetings. Ask students
to identify which strategies they have used, effectively or ineffectively, either
in your class or another.

* Provide several examples of a document students will write and ask them
which ones are good, and why. Both content and writing issues can be
addressed this way. Following [Knuth88I, provide examples of programs
(they're documents, too) and do the same thing.

It can't be denied that teaching writing involves substantially more work than not Specific
teaching it. To become effective writers, students need to write drafts and get Teaching
feedback on those drafts; they need to revise their work based on analysis and Techniques
evaluation. They also need to receive credit for these activities, not simply a grade
on the final product. Fortunately, many of the techniques for teaching writing
effectively also help control the workload.

31
SEI-CM-23 Technical Writing for Software Engineers



Team teaching
Team teach with a member of the English department who is familiar with the
material in this module; that is, one who can draw on the analogies between the
domains and provide process-based instruction. Knuth (among others cited in
the bibliography) taught a course with a technical writing instructor. [Knuth88]
describes in detail the logistics of that arrangement and the roles each instructor
played. Team teaching has also been used in Carnegie Mellon's Master of Soft-
ware Engineering program-a computer science professor and one of the mod-
ule authors recently co-taught a software development seminar.

In a modified version of team teaching, arrange for an English teacher to provide
feedback on drafts and grade the final product. The technique is particularly ef-
fective if this teacher speaks to the class about writing issues related to the feed-
back they receive.

Another technique is to seek advice from a technical writer or a teacher of techni-
cal writing. At Carnegie Mellon, an instructor worked with one author of this
module to structure writing assignments, determine the focus of each, and select
ways of providing feedback. A few hours of consultation (in this case, less than six
hours for the semester) can be a great help.

Demonstrations
Through demonstrations, you show your students how to be effective communi-
cators. Demonstrations can take many forms, such as the following:

When you give a writing assignment, start it for the students either with a hand-
out or on the board. It's not unusual for a writing assignment to provide a prob-
lem definition or identify the audience and some of the constraints. You might
choose to use a portion of the assignment for an in-class exercise that must be
completed later. Select an item from the analysis or planning sections of this
module (Sections 4.1 and 4.2) as the focus for the exercise. Or, later, select a para-
graph or two from students' drafts and revise using an overhead projector and
transparencies.

Demonstrate the writing process by creating and working with a short piece of
text (about 100 words). In 20 or 30 minutes, the class should be able to produce a
draft and evaluate and revise it several times.

Bring examples of your best writing to class and discuss what you have done. In
his mathematical writing class, Knuth regularly discussed his writing with his stu-
dents [Knuth88]..We have used this technique in our own teaching: each week,
students received a new draft of the instructors' work, along with a five-minute
description of how the paper had changed and why. Before long, the students
could identify many intervening activities: refining the task definition, learning
more about the audience, generating new ideas, changing the schedule, respond-
ing to reviewers' comments, overcoming writer's block, etc.

32
Technical Writing for Software Engineers SEI-CM-23



Provide outside examples of how people write and how they read. [Flower89]
contains two small samples. Faculty in the psychology department, English de-
partment, or education program of your school might also be able to provide
samples or information about other sources. Also consider making your own
"think-aloud" tape the next time you plan, write, or revise a paper; it is sure to
hold your students' attention. If you don't care to tape your own process, perhaps
some of your colleagues or members of your writing faculty would be willing.
Tapes of collaborators are particularly interesting.

Student involvement
Self-evaluation precedes peer review, but students can critique and teach each
other. Working in pairs or in small groups, they can provide feedback on every
activity in the writing process (peer conferencing) and evaluate each other's
drafts (peer review). Students who are new to these activities may need clear
structure-a peer review form with specific questions, for example. A few stu-
dents may need to be reminded to be sensitive to the writer's feelings when offer-
ing feedback; and it should be clear to all students that the purpose of these acti-
vities is constructive-to provide information that will help them improve their
documents.

Students can also gain valuable feedback when another student "reverse engi-
neers" a draft, for example by creating an outline or issue tree from the document
(Section 4.2.1 discusses issue trees). Problems with organization and hierarchy
often come to light through this technique. For some documents, it may be appro-
priate to ask students to have a member of their intended audience do a think-
aloud protocol or perform a task on the basis of their written instructions.

Other activities:

* Ask students to write a problem or purpose statement for the paper they are
reviewing or to infer the characteristics of the intended reader.

* Have students do a series of quick reviews of the same draft. They might read
once looking for extraneous information and gaps in information, once for
ambiguity, once for sentences that are awkward or that violate linguistic prin-
ciples (see Section 5 of the annotated outline), and once for errors in grammar
and punctuation.

" When an assignment is complete, students can benefit from one another's
experience by receiving feedback en masse. After you have graded the final
document, duplicate examples of typical problems (with students' names
removed) and ask the class to diagnose problems and suggest improvements.
It's also instructive to provide samples of effective writing; ask the students to
explain why particular samples are effective-and ask them to suggest fur-
ther improvements.

33
SEI-CM-23 Technical Writing for Software Engineers



Practice
Practice is valuable even when teachers don't grade (or even read) every piece of
writing. In addition to relying in part on peer reviews, you can have students keep
portfolios of their writing and use "spot grading" (in the sense of spot checking)
to encourage practice. See [McLeod88] for a description of this technique.

Evaluating Writing should account for a percentage of the grade on every technical docu-
Writing ment that students write, and it should account for a percentage of the final

course grade. Moreover, instructors should take into account their students' acti-
vities during the writing process (see Section 4) as well as grading written prod-
ucts (see Section 5).

Evaluating the process
Students should be required to submit drafts and notes from peer reviews or user
tests when they submit the final document. Since students need to receive feed-
back throughout the writing process, not just at the end, they should be rewarded
for using this feedback to improve their work. They should also be rewarded for
providing constructive feedback to others, and for being able to evaluate their
own work and make improvements.

Other factors in the grade for writing might include: credit for providing peer
reviews for other students, conducting tests, and participating in classroom acti-
vities. This credit can take the form of checkmarks or points rather than letter
grades. The chart below illustrates two systems used by the authors of this mod-
ule. We convert the accumulated checks or points to a percentage of the final
grade.

Quality Checkmarks Points

exceptional t-10 + 3

acceptable 10 2

poor (or incomplete) P1 - 1

not done no credit -1

Evaluating the product
Evaluating writing is not a matter of determining right and wrong so much as it is
a matter of noting what works-and what works best out of a number of op'-ons,
Often, evaluators know instinctively that one paper is clearer and easier to read
than another. Linguistic principles provide good criteria for identifying why a

34 Technlcai Writing for Software Engineers SEI-CM-23



document "works." The areas of document design, discourse analysis, and rhet-
oric also provide criteria for giving feedback on drafts and awarding a final grade
on the finished document. Although students should be evaluated primarily on
the effectiveness of their writing, they should also be graded on correctness-
spelling, punctuation, and grammar. (See Sections 1, 4, 5, and 6.2 of the annotated
outline.)

Another consideration in determining a grade is whether the final product is bet-
ter than the earlier drafts. Two-stage grading is one way to recognize the values of
drafts and final versions. Both are graded, but the final effort is worth twice as
much as the draft. The grade for the draft recognizes and encourages a good
start; the grade for the final version recognizes and encourages improvement.

Below are two approaches to grading documents: wholistic grading and detail
grading Each has a place in evaluation, and both are valid.

In wholistic grading, the instructor reads each paper quickly and assigns a grade
without going back to diagnose specific problems. The wholistic grader usually
writes a comment on the end of the paper. Wholistic grading saves time and al-
lows the teacher to respond to overall quality and global issues such as logic, or-
ganization, coherence, and tone. However, low-level errors such as grammar and
spelling errors may be overlooked; and only extremely awkward sentences may be
noticed.

In detail grading, the instructor reads each paper carefully, identifying strengths
and weaknesses along the way. The detail grader usually writes many comments
in the margins of the paper and circles (or corrects) problems and errors. Some-
times a marginal notation can be tagged to a fuller comment at the end of a paper,
and sometimes students are referred to a specific section in the textbook. Detail
grading, though it takes more time, provides the student with concrete feedback.
However, this approach often leads instructors to focus on local issues and
neglect global ones.

A compromise would be to assign a wholistic grade to a document and read it a
second time for a particular set of details. Other approaches are to use wholistic
grading at one time and detail grading at another, or to give two grades on a single
assignment.

Section 5.1.1 of the annotated outline provides information about global issues,
and Section 5.1.2 addresses local issues. The technical writing textbooks we have
recommended are good sources of information about both.

0

35
SEI-CM-23 Technical Writing for Software Engineers



Exercises Documents that students typically write for software engineering courses should
and be the basis for writing instruction. The following are presented for instructors
Support who wish to include supplementary exercises and material.
Materials [Oseng3]:

Chapter 1, "Why Study Technical Communication," provides excellent sup-
port material for motivating students who don't believe engineers need to be
good writers.

Part VI, with its three chapters on "Making Your Writing Readable," is a good
source of reading assignments and exercises. Although all the material in Part
VI is valuable, we especially recommend the following:

13-1 A&B,
14-1
15-1, 15-3, 15-4, 15-5

Other helpful exercises are 3-1 (parallelism), 3-4 (making lists), and 6-1 (prob-
lem statements).

[Tichy8g]

The advice and examples in [Tichy88] can be selected as supplementary read-
ings as specific topics arise. We particularly recommend Part 3, "Style," and
Appendix A, "Fallacies to Forget." The book also addresses levels of edit (Ch.
2), outlining (Ch. 4), and standards of correctness (Ch. 6-9).

[Williams89]

Williams provides a good introduction to some basic principles. However,
most of the exercises focus on local issues. Exercises can be selected based on
the problems that are evident in students' writing.

[Flower891

The self-exam (pp. 46-48) and the checklists for structure and diagnosing
problems (pp. 131 and 257) provide the basis for several exercises.

Examples of aloud think-aloud protocols appear in Chapter 2.

Issue trees appear in Chapters 1 and 7.

Other material that students might find helpful are the (descriptive) models of
the writing process (p. 52) and information about cues for the reader (p. 256).

36
Technical Writing for Software Engineers SEI-CM-23



• Bibliography

Anderson82

Anderson, Paul V., Brockman, R. John, and Miller, Carolyn R., eds. New Essays
in Technical and Scientific Communication: Research, Theory, Practice. Far-
mington, N. Y.: Baywood Publishing Co., 1983. Baywood Technical Communi-
cation Series, Vol. 2.

The editors rightly maintain that these twelve essays represent the best of current
scholarship. The volume is divided into five parts: (1) Empirical Research, (2) Reassess-
ing Readability, (3) Approaches from Rhetoric, Discourse Theory, and Sociology, (4)
Historical Perspectives, and (5) Redefinition. Parts 2 and 3 will be the most useful back-
ground reading for the instructor, especially the following: Flower, Hayes, and Swarts'
"Revising Functional Documents: The Scenario Principle," Huckin's "A Cognitive Ap-
proach to Readability," Winkler's "The Role of Models in Technical and Scientific
Writing," Zappen's "A Rhetoric for Research in Sciences and Technologies," and Sel-
zer's "What Constitutes a 'Readable' Technical Style?" "What's Technical About Tech-
nical Writing?" is a fine conclusion that raises thoughtful distinctions between techni-
cal writing and writing technically.

Andrews82a

Andrews, Deborah C., and Blickle, Margaret D. Technical Writing: Principles
and Forms. New York: Macmillan Publishing Co., Inc., 1982.

This was one of the first textbooks to take a process approach (define, describe, etc.) It
has good examples but is more appropriate for younger students.

Andrews82b

Andrews, William D., and Andrews, Deborah C. Write for Results. Boston,
Mass.: Little, Brown, 1982.

The authors provide a number of charts and graphs to explain aspects of the writing
process. They raise questions about what audience analysis really means and consider
the implications and applications of such an analysis. The book also presents the con-
nection between audience and purpose through an example of the same subject matter
written for five different sets of readers.

0
37

SEI-CM-23 Technical Writing for Software Engineers



Atlas81

Atlas, Marshall A. "The User Edit: Making Manuals Easier to Use." IEEE
Transactions on Professional Communication PC-24, 1 (Mar. 1981), 28-29.

Abstract: Possibly the simplest way to make a technical manual easier to use is a "user
edit"--that is, havingan inexperienced user try to work with a machine, using only its manual
as a guide. Ifis errors and hesitations should tell you where the weak points are. This report
describes how to set up such tests, what to be careful of, and some of the benefits you can
expect.

A short, succinct, and useful article on informal and formal testing with the user edit.
Students writing technical manuals should understand that this testing is necessary,
and not ideal, practice.

Baecker88

Baecker, Ronald. "Enhancing Program Readability and Comprehensibility
with Tools for Program Visualization." Proceedings of the 10th International
Conference on Software Engineering 1988, 356-366.

Abstract: In order to make computer programs more comprehensible, the presentation of pro-
gram source text, program documentation, and program execution needs to be enhanced over
its conventional treatment. The paper describes a number of new techniques and tools devel-
oped to achieve these ends. One of these is a novel design for the effective presentation of
source text in the C programming language using high-quality digital typography, and a pro-
cessor which implements the design. Some experimental evidence is summarized to demon-
strate that the resulting source text presentation is significantly more readable and compre-
hensible than the presentation conventionally used today. Brief descriptions are also given of
two other techniques, the development of a novel system of structured program documenta-
tion incorporating both texts and graphics, and the portrayal of program execution with
coloured computer animation.

Baecker's hypothesis "that a program's appearance dramatically effects its comprehen-
sibility and usability" is empirically confirmed; subjects' performance, as measured on a
comprehension test, increased by 25%. There is brief but good coverage of the design
principles that have guided the experimentation and the recommended framework
that applies these principles. Baecker also touches on the issue of programs as publica-
tions, noting that this work "represents another step toward Knuth's goal of literate
programming."

Barker88

Barker, Thomas T "Feedback in Hightech Writing." Journal of Technical Writ-
ing and Communication 18, 1 (1988), 35-54.

Abstract: This article is concerned with reviews, surveys, tests, and other formal procedures
used in writing for the computer industry that are designed to provide authors and publica-
tions managers with information about the quality and nature of documentation. The litera-
ture in this area reveals a number ofproblems with feedback in hightech writing, including the
lack of a consistent definition offeedback processes. The article investigates various types of

38
Technical Writing for Software Engineers SEI-CM-23



reviews, theoretical aspects offeedback, and elements offeedback specific to hightech writing.
This investigation yields three consistent perspectives on feedback: management, style and
rhetoric, and research.

This article treats feedback practically by looking at current methods and theoretically
through discussions of communication theory and automation. Barker's effort is mostly
definition and survey; there's no "how to" here. But the article may be useful for com-
parisons between technical reviews and testing documents; "another of the parallels
between hightech writing and software development is in the teamwork characteristic
of both."

Barnum84

Barnum, Carol, and Fischer, Robert. "Engineering Technologists as Writers:
Results of a Survey." Technical Communication 31, 2 (1984), 9-11.

Abstract: This article presents the results ofa 1982 survey to learn the importance ofcommu-
nication skills to engineering technologists on their jobs. Similar surveys have assessed the
importance of communication skills for engineers and for technicians, but none has polled
engineering technologists. Knowing the attitude of students- "Why do we have to take so
many English courses?"--the authors wanted to know whether that attitude changes after
these students begin working It does, they say.

The authors report on the 20% return from a sample of 1500 Southern Tech graduates
representing "technology degrees in the civil, electrical, mechanical, industrial, archi-
tectural, textile, and apparel fields." These results should alert students to the impor-
tance of good communication skills; for example: 91% felt that their writing was either
"important" or "very important" to their work; 73% noted that advancement involved
an increase in their own time spent writing; and 75% rated organization of ideas as the
"most important" skill needed on the job. Additional survey results on technical com-
munication can be found in [Olsen83].

Bentley86a

Bentley, Jon, and Knuth, Don. "Programming Pearls." Comm. ACM29, 5 (May
1986), 364-369.

The value of this article lies in the concept of literate programming. Philosophically,
literate programming emphasizes the place of literacy in software development, mak-
ing room for the intersection of natural and computer languages. By highlighting the
need for individuals to "read" programs, Knuth introduces a new kind of learning in
software engineering education-one that stresses the importance of sharing knowl-
edge by publishing (model) programs for emulation and enhancement. Finally, literate
programming draws attention to the issue of audience so that, as Bentley observes,
Knuth's work takes an "important step towards programs fit for man and computing
beast." For an example of a literate program by Knuth, see the next "Programming
Pearls" column (June 1986). For an additional reference to literate programming, see
[Knuth84].

39
SEI-CM-24 Technical Writing for Software Engineers



Bentley86b

Bentley, Jon. "Programming Pearls." Comm. ACM 29, 9 (Sept. 1986), 832-839.

Bentley shares a few document design lessons on tables, figures, and text. He notes that
iteration, consistency, and minimalism are "fundamental principles for producing bet-
ter text, programs, or documents." A "catalog of pet peeves" is included in this brief,
friendly introduction.

Bitzer68

Bitzer, Lloyd. "The Rhetorical Situation." Philosophy and Rhetoric 1, 1 (1968),
1-14.

Bitzer identifies three components that are essential to the rhetorical situation: the
speaker or writer's exigence (or sense of an imperfection that needs to be addressed),
the audience, and the constraints. Constraints include "artistic proofs," aspects of writ-
ing that the writer manages, and "inartistic proofs" such as contracts, agreements, laws,
etc. This theoretical article is dense at times but valuable in providing a conceptual
framework for understanding communication and rhetorical discourse. For instructors
only.

Bizzel182

Bizzell, Patricia. "Cognition, Convention, and Certainty: What We Need To
Know About Writing." Pre/Text 3, 3 (1982), 213-243.

Bizzell discusses discourse communities in the context of critiquing innerdirected (cog-
nitive) theories of the composing process. She criticizes the process theorists (repre-
sented by Flower and Hayes [Flower8l]) concerning their limited preoccupation with
how people write and not why they write as they do. Bizzell argues that we must see
writers as problem solvers "situated in discourse communities that guide problem defi-
nition and the range of alternative solutions." The final one-third of her article is fairly
repetitive in its discussion of the politics of the composition classroom. Supplementary
reading for the instructor.

Bond85

Bond, Sandra J. "Protocol-Aided Revision: A Tool for Making Documents
Usable." Proceedings of the 1985 IBMAcademic Information Systems University
AEP Conference, June 1985, 327-334.

Abstract: Participants will learn how to use Protocol-Aided Revision (PAR) to analyze and
improve documents for clarity anti usability.

This paper was the basis for a workshop session on protocol-aided revision. Topics in-
clude: "What is a protocol?" and "Why test?" Bond provides step by step instructions
for conducting a protocol, analyzing the results, and applying those results to revision.

40
Technical Writing for Software Engineers SEI-CM-23



Brown83

Brown, Gillian, and Yule, George. Discourse Analysis. Cambridge: Cambridge
University Press, 1983.

This text provides information about linguistics and discourse analysis that is useful for
instructors but probably too advanced for students. The topics of particular interest in-
clude: paragraphs, topic, information structure, cohesion, and coherence.

Bruffee84

Bruffee, Kenneth A. "Collaborative Learning and the 'Conversation of Man-
kind."' College English 46, 7 (Nov. 1984), 635-652.

In this article, Bruffee covers a rationale for collaborative learning, the relationship of
that rationale to classroom practice, and implications. His discussion also centers on
discourse communities; he sees collaborative learning as providing for particular kinds
of conversation, social contexts for that conversation, and communities. His preoccu-
pation with conversation is relevant; he states that "writing always has its roots deep in
the acquired ability to carry on the social symbiotic exchange we call conversation."
Supplementary reading.

Brusaw76

Brusaw, C. T, Aired, G. J., and Oliu, W E. The Business Writer's Handbook
New York: St. Martin's Press, 1976.

This style guide is a practical reference book that provides examples. However, it has
some of the limitations of Strunk and White. For further information, see the annota-
tions for [Strunk79] and [Williams89].

Chicago82

The Chicago Manual of Style. Chicago: University of Chicago Press, 1982.

This manual is one of the most complete handbooks available. It contains information
appropriate for people who publish documents as well as those who write and edit
them.

Chrlstensen78

Christensen, Francis, and Christensen, Bonniejean. Notes Toward a New Rhet-
oric: Nine Essays for Teachers. New York: Harper & Row, 1978.

In the preface, the authors point out that there is no evidence for a correlation between
knowledge of grammar and writing ability. Learning elements of style by reading great
works is equally problematic. The authors propose, instead, a "generative rhetoric" of
the sentence based on levels of structure where the student "adds further levels to what
he has already produced, so that structure itself becomes an aid to discovery." A gen-
erative rhetoric of the paragraph applies the principles used in analyzing the sentences
and sees the paragraph as a macrosentence. The two chapters on sentence and para-
graph structure will be of most interest.

41
SEI-CM-24 Technical Writing for Software Engineers



DohenyFarlna86

Doheny-Farina, Stephen. "Writing in an Emerging Organization: An Ethno-
graphic Study." Written Communication 3, 2 (Apr. 1986), 158-185.

Abstract: This study explored the collaborative writingprocesses of a group of computer soft-
ware company executives. In particular, the study focused on the year-longprocess that led to
the writing of a vital company document. Research methods used included participant/
observations, open-ended interviews, and Discourse Based Interviews. A detailed analysis of
the executive collaborative process posits a model that describes the reciprocal relationship
between writing and the organizational context. The study shows the following. (1) how the
organizational context influences (a) writers' conceptions of their rhetorical situations, and
(b) their collaborative writing behavior; and (2) how the rhetorical activities influence the
structure of the organization.

This article is interesting because of its subject matter and the scene it describes.
Doheny-Farina focuses on a double interaction: how social and organizational contexts
affect the writing of a business plan and how the writing of that plan affects the organi-
zation. He describes, for example, how the writing situation prompts and exposes ten-
sion between promotional visions and clear production plans. The detailed introduc-
tion, outlining of theoretical assumptions, and procedures section will be of interest to
writing researchers; the body of the article will be more relevant for software engi-
neers. Recommended for the instructor and students.

Duffy81

Duffy, Thomas M. "Organising and Utilizing Document Design Options." In-
formation Design Journal, Ltd. 2 (1981), 256-266.

Abstract: In this discussion paper, the author concentrates on the problems of modeling the
design process as a means of closing the gap between research and practice in information
design. He proposes a new document design model but notes that competing objectives, in
particular cost constraints, may prevent the implementation of good design procedures in
practice.

Duffy proposes a systems analysis model of document design. Although he focuses on
instructional text, much of his article is broadly applicable; and the model provides a
helpful checklist.

Duffy85

Duffy, Thomas M. Readability Formulas: What is the Use? CDC Tech. Rep. 23,
Carnegie Mellon University, Nov. 1985. Also appears as a chapter in Duffy, T
M., and Waller, Robert. Designing Usable Text. Orlando, Fla.: Academic Press,
1985.

Duffy identifies factors that must be taken into account when determining the readabil-
ity of a document. These include format, graphics, and the reader's subject matter
knowledge and reading skill.

42
Technical Writing for Software Engineers SEI-CM-23



. Dunkle88

Dunkle, Susan B., and Pesante, Linda Hutz. "The Role of the Writer on the
Software Team." Proceedings of the 35th ITCC, May 1988, WE51-53.

Abstract: The growth of the computer field has been a major factor in the growth of technical
writing as a profession. Software developers are beginning to recognize the need for technical
writers at all stages of the software life cycle from the development of requirements to the im-
plementation of the system. This paper explores the areas of commonality between the techni-
cal writing process and software development process and the special talents that technical
writers bring to a software development team.

This paper stresses the contributions that technical writers can make throughout the
software life cycle. It is recommended reading for students. If they become aware of the
range of skills technical writers have, they will be able to work more productively with
technical writers.

Felker8l

Felker, D., Pickering, Frances, Charrow, Veda R., Holland, V Melissa, and
Redish, Janice C. Guidelines For Document Designers. Washington, D.C.:
American Institutes for Research, 1981.

This book presents guidelines for 25 principles concerning text organization, writing.
sentences, typography, and graphics. With each guideline are: explanations, examples,
advice, and a short summary of relevant research. The research cited on comprehen-
sion, recall, etc., provides reminders that principles are important in relation to the ac-
tivities that readers perform, not in and of themselves. The text can serve as a desk
reference if the reader first becomes familiar with the contents.

Flower8l

Flower, Linda, and Hayes John R. 'A Cognitive Process Theory of Writing."
College Composition and Communication 32 (Dec. 1981), 365-387.

Based on their research with writers performing think-aloud protocols, the authors in-
troduce their cognitive process theory, which sees composing as a goal-directed, hierar-
chical thinking process. This article will provide the instructor with an understanding of
the issues that are fundamental to a cognitive approach to writing.

Flower89

Flower, Linda. Problem-Solving Strategies for Writing. San Diego, Calif.: Har-
court Brace Jovanovich, 1989.

Although this book is clearly geared to undergraduates, it contains a great deal of use-
ful information. Chapter headings include: "Understanding Your Own Writing Pro-
cess," "Making Plans," "Organizing Ideas." There are two chapters on audience and
two on revising and editing. Instructors who have never taught writing should read this
book; and small sections will be appropriate for even sophisticated students.

4,SEI-CM-24 Technical Writing for Software Engineers



Guillemette87

Guillemette, Ronald A. "Prototyping: An Alternate Method for Developing
Documentation." Technical Communication 34, 3 (Aug. 1987), 135-141.

Abstract: Documentation can be developed more effectively with a prototyping approach,
says the author, who first explains the techniques and benefits of system prototyping and then
shows how the method can be applied to documentation. [From the introduction.]

The author considers the limitations of the linear prespecification approach and argues
for attending to the iterative nature of the document.design process through reader
evaluation and comments in the revision cycle. This is an interesting article, but it
stresses the "what" more than the "how." An engineer reading this might struggle with
the application of rapid prototyping to writing. Guillemette doesn't specify how needs
analysis for software is like needs analysis for documentation.

Halloran78

Halloran, S. Michael. "Technical Writing and the Rhetoric of Science." Journal
of Technical Writing and Communication 8, 2 (1978), 77-88.

Abstract: The traditional view of rhetoric and science as sharply distinct has helped reduce
the technical writing course to mere vocational training Current thinking in rhetorical theory
and philosophy of science supports the contrasting view that science is rhetorical. Salient as-
pects of the rhetoric ofscience are illustrated by Crick and Watson's discovery of the structure
of DNA, as recorded in Watson's "The Double Helix"[1]. Analysis of the rhetoric of science
suggests that the study of technical writing could be central to liberal e'ucation for a techno-
logical society.

This is interesting supplementary reading for the instructor, but it is not essential.

Hamlet86

Hamlet, Richard. 'A Disciplined Text Environment." Proceedings of the Inter-
national Conference University of Nottingham, Apr. 1986, 78-89. This article
also appears, under the same title, in Text Processing and Document Manipula-
tion, J. C. van Vliet, ed., Cambridge! Cambridge University Press, 1986.

Abstract: Computer text processing is still in the assembly-language era, to use an analogy to
program development. The low-level tools available have sufficient power but control is lack-
ing The result is that documents produced with computer assistance are often oflower quali-
ty than those produced by hand: they look beautiful, but the content and organization suffer
Two promising ideas for correcting this situation are explored: (1) adapting methods of mod-
em, high-level program development (stepwise refinement and iterative enhancement) to doc-
ument preparation; (2) using a writing environment controlled by a rule-based editor, in
which structure is enforced and mistakes more difficult to make.

On the topic of rules, this is an interesting article to juxtapose with [Miller80]; for ex-
ample, in considering writing environments controlled by rule-based editors, one might
want to argue that educating the practitioner is preferable, in the long run, to control-
ling the method. Hamlet makes strong and useful analogies between creating a docu-
ment and developing a program. He pairs, for example, formatting programs with

44
Technical Writing for Software Engineers SEI-CM-23



assemblers, and the current word processing situation, with the "undisciplined" use of
programming languages that preceded "modem programming practice." The brief
discussions of stepwise refinement and iterative enhancement are insightful and on
target. This is essential reading for instructors and is appropriate for students too.

Hartman89

Hartman, Janet D. "Writing to Learn and Communicate in a Data Structures
Course." ACM SIGCSE Bulletin 21, 1 (Feb. 1989), 32-36.

Hartman's writing-across-the-curriculum experience has been precisely applied to the
data structures classroom, but her writing activities can certainly be extended to fit in
any computer science course. She uses four types of microthemes (short essays on 5x8
index cards): summaries, support for a thesis, generating a thesis from provided data,
and quandary posing. Other assignments involve varying the contexts for writing so that
students deal with audience issues by assuming roles such as expert or novice, or with
issues of genre, by writing in a number of formats-one paragraph response, memo,
report, etc. An excellent short article that provides concrete ways of making cost-
effective changes in writing assignments and handling evaluation. Essential for instruc-
tors.

Hayes87

Hayes, John R., Flower, L., Schriver, K., Stratman, J., and Carey, L. "Cognitive
Processes in Revision." Advances in Applied Psycholinguistics: Reading, Writing
and Language Processing, Vol. 2, S. Rosenberg, ed. Cambridge University
Press, 1987, 176-240.

This is a comprehensive and lengthy treatment of revision which also includes a short
literature review, the [Flower8l] process model of composing, and even an introduc-
tory argument on the value of using think-aloud protocols in theory building and test-
ing. Readers should be prepared to speed up and slow down depending on interest in
the individual subtopics. Each of the major subprocesses in the revision model (task
definition, evaluation, problem detection, problem diagnosis, and strategy selection) is
treated in detail. The chapter concludes with a useful summary of major findings.

Hester8l

Hester, S. D., Parnas, D. L., and Utter, D. F. "Using Documentation as a Soft-
ware Design Medium." The Bell System Technical Journal 60, 8 (Oct. 1981),
1941-1977.

Abstract: This article describes a software design method based on the principles of separa-
non of concerns and information hiding The principle of separation of concerns is used to
structure the design documentation, and information hiding is used to guide the internal de-
sign of the software. Separation of concerns requires that design information be divided into
clearly distinct and relatively independent documents. The design documents are the main
products of the initial design phase, and are carefully structured to (i) expose open issues, (ii)
express design decisions, and (iii) ensure that information is recorded in a way that allows it to
be readily retrieved later Information hiding is used to design software that is easy to change.
We have applied many elements of the design method to the development of the No. 2 Service

45SEI-CM-24 Technicai Writing for Software Engineers



Evaluation System (SES), a multiprocessor data acquisition and transaction system. Our
experiences in applying the design method are described, and some examples are included.

An excellent article. The authors treat the scope, use, and design considerations for the
software design associated with each step that the document covers. They also piovide
sound principles to guide the preparation of software documentation. The authors
stress, in very clear terms, the relationship between design and documentation: "Since
documentation is the main product of the design phases, it is important and must be
produced with the same discipline and care with which code is produced." While they
are candid about the costs of adhering to this discipline, they also "feel that the cost of
neglecting it is even higher." Recommended for instructors and students.

Hoare84

Hoare, C. A. R. "Programming: Sorcery or Science?" IEEE Software 1, 2 (Apr.
1984), 6-16.

Abstract: Professional programming practice should be based on underlying mathematical
theories and follow the traditions of better-established engineering disciplines. Success will

come through improved education

In hypothetical terms, Hoare considers three present-day roles of computer program-
mers. They are: craftsmen who serve apprenticeships and develop skills by experience,
high priests who are served by a devoted team of acolytes yet held in awe and fear by the
public, and modern engineering professionals. These views of programming as craft,
magic, and science can be neatly juxtaposed to Young's treatment of writing as art,
craft, gift, and knack in [Young80].

Jones88

Jones, Patricia L., and Doyle, Kelly M. "Modularizing Software Documenta-
tion." Proceedings of the 35th ITCC, May 1988, WE49-50.

Abstract: One of the most frequently faced challenges for technical writers is keeping the man-
uals current when software changes. This can be compounded by the need to produce differ-
ent manual versions to accommodate different hardware and operating systems. Carnegie
Group Inc. took a major step towards solving this problem by organizing the documentation
using the modularity principles developed by software engineers. The documentation was re-
designed so that modifications required for different computing environments were greatly
reduced, and in some cases automated. The strategy involved reorganizing the content by iso-
lating conceptual information from machine-dependent procedural information, and using
conditional facilities of our tex formatter to produce different manuals for different environ-
ments. The resulting structure and methodology can now be used across all product docu-
mentation to make porting and maintenance tasks easier and less time-consuming.

The authors describe in detail their procedures for planning and maintaining a large set
of documentation. They discuss topics such as modularity and configuration manage-
ment, as well as their rationale for the choices they made.

46
Technical Writing for Software Engineers SEI-CM-23



. Kernighan74

Kernighan, Brian, and Plauger, P. J. The Elements of Prugramming Style. New
York: McGraw-Hill, 1974.

The authors note that the form and approach of their book has been strongly in-
fluenced by The Elements of Style by Strunk and White (see [Strunk79]). While we have
reservations about the latter's concentration on rules and principles of correctness, we
recognize Kernighan and Plauger's contribution in drawing on the similarities between
programming and writing.

Kinneavy7l

Kinneavy, James L. A Theory of Discourse: The Aims of Discourse. Englewood
Cliffs, N. J.: Prentice-Hall, 1971.

A comprehensive text that includes classical and contemporary approaches to teaching
writing and speech. The opening chapter provides information on models and theories
of communication. Section 3 (on the nature, logic, organization, and style of reference
discourse) will be most relevant to software engineers. For the instructor.

Kirkman7O

Kirkman, A. J. "The Communication of Technical Thought." The Engineer and
Society, E. G. Semier, ed. London: Institute of Mechanical Engineers, 1970,
180-185.

Abstract: There is much concern among employers about the poor command of English
shown by engineering and science graduates; this is a serious matter when it results in failure
to communicate technical information. The Department of English and Uberal Studies in the
Welsh College of Advanced Technology has launched an investigation into the problems of
scientific communication. Preliminary results show that the faults are by no means all on one
side and that schoolteachers must take much of the blame; but barriers to communication are
often raised artificially by the scientists themselves.

The author provides a very good introduction to long-standing problems in technical
communication; the discussion on sequential and associative types of mind is interest-
ing. Kirkman also details, and dispenses with, a number of "excuses" that are often
made for inarticulate scientific writing including the notion that English grammar is too
rigid and the idea that "scientists are not practiced in slowing down their thinking to a
rate appropriate to the writing process."

Knuth84

Knuth, Donald E. "Literate Programming." The Computer Journal 27, 2 (1984),
97-111.

Abstract: The author and his associates have been experimenting for the past several years
with a programming language and documentation system called Web. This paper presents
Web by example, and discusses why the new system appears to be an improvement over pre-
vious ones.
See [Bentley86].

47SEI-CM-24 Technical Writing for Software Engineers



Knuth88

Knuth, D. E., Larrabee, T, and Roberts, P. M. Mathematical Writing. STAN-
CS-88-1193, Stanford University, 1988.

A portion of this report is a minicourse on technical writing. Its value lies in the exam-
ple Knuth sets in providing writing instruction in a content area.

Kraemer88

Kraemer, Kenneth L., and King, John Leslie. "Computer-Based Systems for
Cooperative Work and Group Decision Making." ACM Computing Surveys 20,
2 (June 1988), 115-146.

Abstract: Applications of computer and communications technology to cooperative work
and group decision making has grown out of three traditions: computer-based communica-
tions, computer-based information service provision, and computer-based decision support.
This paper reviews the group decision support systems (GDSSs) that have been configured to
meet the needs of groups at work, and evaluates the experience to date with such systems.
Progress with GDSSs has proved to be slower than originally anticipated because of short-
comings with available technology, poor integration of the various components of the com-
puting "package," and incomplete understanding of the nature of group decision making.
Nevertheless, the field shows considerable promise with respect to the creation of tools to aid
in group decision making and the development ofsophisticated means of studyingthe dynam-
ics of decision making in groups.

This article discusses GDSSs (group decision support systems) and new variants which
aid group collaboration on common tasks such as: "setting meetings, sharing informa-
tion, outlining ideas and evaluating proposals." Many of these capabilities currently ex-
ist for individuals but have not yet been adapted for group activity. Specifically of inter-
est is The Collaboration Laboraory which "focuses on writing and argumentation and
involves verbal models and qualitative techniques through the manipulation of text-
oriented data and graphical images." Includes text-oriented tools: a "common human-
machine interface, WYSIWIS (what you see is what I see) for presentation of images of
shared information for all participants, public (shared) and private (not shared) win-
dows on the workstations, and applications such as a group method of preparing out-
lines of ideas and associated text and a group method of evaluating plans and programs
that have already been developed." The method of outlining resembles ThinkTank but
includes collaboration capabilities. Another GDSS, The Group Network, focuses on
"interactive computer support for small groups in geographically dispersed but nearby
locations such as offices within a building." Participants are able to create, edit, or sim-
ply exchange graphics, text, or numbers although only one person at a time can do so.

Lehman86

Lehman, John A., "Program Design and Rhetoric." IEEE Software (May
1986), 71-73.

Lehman argues that programmers and managers who have looked to engineering and
mathematics as disciplinary guides for the development of program design have ne-
glected to consider another very relevant discipline-rhetoric. "From an information

48
Technical Writing for Software Engineers SEI-CM-23



processing point of view, the problems faced in rhetoric are very similar to those faced
in programming, and the rhetorical solutions to these problems resemble the major
tenets of structured programming and structured design." We agree with Lehman but
find that his emphasis on "structure" limits his definition of rhetoric to arrangement
and style. In doing so, he fails to account for "invention" or problem definition and
analysis in rhetoric and writing. Essential reading for the instructor, and recommended
for students.

Mathes76

Mathes, J. C., and Stevenson, D. W Designing Technical Reports: Writing for
Audiences and Organizations. New York: Bobbs-Merrill Educational Publish-
ing, 1976.

This textbook offers a good treatment of purpose/problem statements in an organiza-
tional setting. It ties the issues of complex audience and component structure together,
emphasizing that particular readers read particular parts of reports. Writers, therefore,
should think about reports in terms of opening and discussion components. (For con-
trary findings, see [Spilka88].) They should also design reports that move from general
to particular between the two components, and make the components self-sufficient.
Note: the matrix for audience analysis may be too complex for easy use.

McLeod88

McLeod, Susan H. "The Portfolio Method For Teaching Technical Communi-
cation." Technical Communication 35, 3 (1988), 238-239.

Two pages of good, concrete, teaching strategies i:i the portfolio method. McLeod pro-
vides smart, efficient suggestions on spot-grading and the excellent instruction sheet
that she gives her students.

Meinke87

Meinke, John G. 'Augmenting a Software Engineering Projects Course with
Oral and Written Communications."ACMSIGCSE Bulletin 19, 1 (Feb. 1987),
238-243.

This paper describes a "Senior Projects" course and provides information about the two
oral presentations and seven formal written reports that are required. Writing assign-
ments include: extended abstract, justification report, milestones, requirements, sys-
tem documentation, user manual, and final system report. The article concentrates on
content requirements as opposed to teaching method (i.e., what approach is taken to
technical communication in the classroom? and how have the students benefited from
that approach?), but it is a useful example of the integration of technical communica-
tion and software engineering in the classroom. Recommended for instructors.

49
SEI-CM-24 Technical Writing for Software Engineers



Meyer82

Meyer, Bonnie J. F. "Reading Research and the Composition Teacher: The Im-
portance of Plans." College Composition and Communication 33, 1 (Feb. 1982),
37-49.

Meyer summarizes research related to planning and discusses three functions of writ-
ing plans. The topical function helps the writer generate and organize main ideas; the
highlighting function helps the writer show priorities and important relations between
ideas. The informing function helps writers decide "how to present new knowledge
while keeping readers aware of the old." Meyer presents empirical evidence for five
basic writing plans that have an impact on readers' comprehension. These plans are:
antecedent/consequent, comparison, description, response, and time order. Recom-
mended reading for instructors.

Miller79

Miller, Carolyn. 'A Humanistic Rationale for Technical Writing." College
English 40, 6 (Feb. 1979), 610-617.

Miller considers problematic and lingering assumptions about language and technical
writing as the result of a pervasive positivist view of science. While one might be
tempted to consider this philosophical piece as secondary reading, it is a concise and
thought-provoking critique of "what has been called 'the windowpane theory of lan-
guage': the notion that language provides a view out onto the real world, a view which
may be clear or obfuscated." Miller also considers new directions in the philosophy of
science and corresponding new relations between rhetoric and science.

Miller8O

Miller, Carolyn. "Rules, Context and Technical Communication." Journal of
Technical Writing and Communication 10, 2 (1980), 149-180.

Abstract: The concept of "rule" derived from linguistics and anthropolog, provides a way of
understanding the relationship between contet, purpose, and message production and inter-
pretation. "Rules" are shared expectations which structure situations and guide individual
action. This paper shows some of the concepts that have come out of rules theory in communi-
cation research and suggests their particular relevance and utility to understanding theprob-
lems and situations in technical communication.

This is a thoughtful article that places "the source of authority for rules in those who
use them, not in some impersonal or absolute authority." Miller's discussion on context
as a hierarchy is particularly interesting, as are the distinctions she makes between con-
stitutive and regulative rules. Constitutive rules cover all permissible game moves
while regulative rules govern efficient play.

I
50-

Technical Writing for Software Engineer. SEI-CM-23



. Mingione83

Mingione, Al. "Iteration, Key to Useful Documentation." Journal of Systems
Management 34 (Jan. 1983), 23-25.

Mingione claims that since iteration is "a principal concept within the development," it
is a more "natural" and "easier way to document." We agree with Mingione's approach
but find that he skirts the issue of how one produces iterative documentation. It is un-
realistic to maintain that through "iteration these drafts will evolve to a communication
understood by all" without attending to guidelines, goals, constraints, and planning and
outlining techniques, etc. In Mingione's limited sense, iteration means drafts, and per-
haps not necessarily improved drafts. His understanding of technical writers is also
reactionary-they are largely editors/stylists who don't take part in the development
process, but who may "make others interact effectively through documentation." Min-
gione supports the iterative approach, or writing within the development process, but
ironically, not for writers. Essential reading for the instructor and students.

0del185

Odell, Lee, and Goswami, Dixie. Writing in Nonacademic Settings. New York:
The Guilford Press, 1985.

This is secondary reading for the instructor. Of special interest are: Colomb and Wil-
liams' treatment of form in "Perceiving Structure in Professional Prose" and Miller and
Selzer's article, "Special Topics of Argument in [Transportation] Engineering Re-
ports." Two articles addressing the influence of new technologies on composing, Hal-
pern's "An Electronic Odyssey" and Murray's "Composition as Conversation: The
Computer Terminal as Medium of Communication," offer insights. The latter articles
are already somewhat dated in terms of technologies, but the observations on electron-
ic discourse in general are still relevant. Finally, issues of context are addressed in two
articles representing the social approach to technical writing: Faigley's "Nonacademic
Writing: The Social Perspective" and Odell's "Beyond the Text: Relations Between
Writing and Social Context."

Olsen83

Olsen, Leslie A., and Huckin, Thomas N. Principles of Communication for
Science and Technology. New York: McGraw-Hill, 1983.

This textbook addresses business, scientific, and technical writing. The first chapter,
"Why Study Technical Communication," provides convincing information drawn from
studies by the American Society for Engineering Education. Three chapters on "Mak-
ing Your Writing Readable" provide concrete advice based on psycholinguistic princi-
ples. Other topics include: audiences, constructing arguments, information ordering,
visual elements, oral presentations, and proofreading. The book also contains a list of
references and additional reading for each chapter, realistic examples and exercises,
and a punctuation guide. If a single textbook is to be used, this is the one. It is essential
reading for instructors and students.

A second edition of this textbook will be released mid-1990 under the title Technical
Writing and Professional Communication. The new edition contains a complete revision

51
SEI-CM-24 Technical Writing for Software Engineers



and update of material as well as several entircly new chapters. Of particular interest
are the additional four chapters on readability, along with sections on drafting and word
processing, testing and revising, and documentation.

Ong82

Ong, Walter J. Orality and Literacy: The Technologizing of the Word. London:
Methuen, 1982.

Two chapters in this fascinating book are the most relevant: "Writing restructures con-
sciousness" and "Print, space and closure." Ong points out that many current objec-
tions and fears about the inhumanity of computers parallel Plato's objections about
writing: that it is artificial, unresponsive, and weakens the mind by destroying memory.
Ong's discussion on post-typography and its consequences is also interesting. He ex-
plains how "electronic transformation of verbal expression has both deepened the com-
mitment of the word to space initiated by writing and intensified by print and has bought
consciousness to a new age of secondary orality." Secondary reading for instructors.

Penrose88

Penrose, John M., and Seiford, Lawrence M. "Microcomputer Users' Prefer-
ences For Software Documentation: An Analysis." J. Technical Writing and
Communication 18, 4 (1988), 355-366.

Abstract: Fundamental requirements for good user documentation have not changed over the
years. Manuals must be complete, accurate, clear, readable, and available on time. What has
changed are tolerances and standards. Today's users-typically business professionals and
even expert technicians and engineers-will no longer accept unreadable and inaccessible
publications. The days of documentation with poor aesthetics have passed. This article an-
alyses users' opinions and preferences for microcomputer software documentation. The re-
sults provide valuable gi. 1 nce for software authors, designers, and publishers.

The results of this survey are generally informative but clearly should not be used to
replace audience and task analyses and testing for particular software documentation.
Self-reporting is sometimes an inaccurate indicator of how individuals use documenta-
tion. The article also addresses the subject of emerging standards for software docu-
mentation; it provides the set of 12 sections for comprising a document from the IEEE
Working Draft, Standard for Software User Documentation. The bibliography includes
references to guides and handbooks on software documentation.

Per180

Perl, Sondra. "Understanding Composing." College Composition and Commu-
nication 31, 4 (Dec. 1980), 363-369.

Perl uses the terms retrospective and projective structuring to capture the backward and
forward nature of composing, "the move from sense to words and from words to sense,
from inner experience to outer judgment and from judgment back to experience." She
describes the writer's process as recursive in the rereading of bits of texts, going back to
interpret the topic and the "felt sense" that surrounds that topic. Pcrl's understanding
of the writing process as recursive is somewhat different from Flower

52 Technical Writing for Software Engineers SEI-CM-23



and Hayes' who, in addition, stress how routines and subroutines are embedded within
the phases of composing [Flower8l]. This article is a significant and unusual blend of
practical and philosophical research. Secondary reading for instructors.

Perlman86

Perlman, Gary. Multilingual Programming" Coordinating Programs, User Inter-
faces, On-Line Help, and Documentation. TR-86-05, Wang Institute GrAduate
Studies, 1986.

Perlman points out that to separate documentation from issues of programming, user
interfaces, or on-line help is wasteful; to have different people, programmers and writ-
ers, spending "their time expressing the same idea in different languages" is unneces-
sary effort. Following in Knuth's tradition of literate programming, multilingual pro-
gramming extends the process to coordinate program implementation with "the use of
parameterized information for domains outside programming, like documentation and
user interfaces."

Redish83

Redish, Janice C., and Battison, Robbin M. 'A Document Design Model:
Applying Research to Technical Writing." 30th International Technical Com-
munication Conference, 1983, 58-60.

Abstract: This session of the ITCC will be an interactive workshop. We will share insights
from four years of research, practice, and curriculum development. Participants will learn
about the Document Design Center's process model and will use it to analyze sample docu-
ments. Participants will learn about research in linguistics, psychology, and design and how to
apply research findings in their own writing and in their classrooms. We will also discuss tech-
niquesfor evaluatingdocuments-what readability formulas can and cannot do for you, and
what you can learn by having readers test your documents in other ways.

The Document Design Center's process model is interesting to consider alongside the
waterfall model of the software life cycle. Clearly, both models share phases even
though these phases are discussed in different terms. It is important to note that there
is some incompatibility between the DDC claim that the writing process is "cycli-
cal"-that "expert writers work back and forth from planning to writing to revising their
plans to writing again"-and their more linear model which locates specific activities,
such as audience analysis, evaluation, at prescribed stages. More recently, the DDC has
been speaking of pre-design in place of pre-writing, post-design in place of post-writing.
Recommended reading for instructors and students.

- T53SEI-CM-24 Technical Writing for Software Engineers



Redish87

Redish, Janice C. "Integrating Art and Text." Proceedings of the 34th ITCC,
May 1987, VC4-7.

Abstract: Art can make a print manual or online tutorial or help screen more interesting Art
can also help readers understanding the message in the te. In this paper, I explore different
ways in which art can help readers.

The focus of this article is user documentation, and the advice is basic and concrete.

Rehe81

Rehe, Rolf F Typography: how to make it most legible. Carmel, Ind.: Design Re-
search International, 1981.

Rehe provides a solid introduction to the printed word. He briefly describes research
findings and makes recommendations that are appropriate for novices and experts
alike. The book is short and easy to read.

Rice84

Rice, Patricia Brisotti, and Dorchak, Susan Fife. 'A Course in Documentation
and Technical Communication."ACMSIGCSE Bulletin 16, 4 (Dec. 1984), 7-8.

Abstract: The Computer Science program at the C. W Post Campus of Long Island Universi-
ty, which has approimately four-hundred undergraduate majors, is predominantly software
oriented. A course in communication is required and taken at the sophomore level. The con-
cepts covered include information gathering user-friendly programming, system and program
documentation, written and verbal presentations. This course also prepares the students for
the Management Engineering Master's degree offered at C. W Post.

The skeletal description touches on the goals, objectives, and content of this class. In
fact, one might see this description as an annotated syllabus. The course's commitment
to integrating system design and documentation is ambitious, the sections on internal
and external documentation especially interesting and unusual.

Rohman65

Rohman, D. Gordon. "Pre-Writing: The State of Discovery in the Writing Pro-
cess." College Composition and Communication 16 (May 1965), 106-112.

Rohman views writing as a linear process. His discussion of good writing, bad writing,
and creativity is interesting.

Rose80

Rose, M. "Rigid Rules, Inflexible Plans, and the Stifling of Language: A Cog-
nivist's Analysis of Writer's Block." College Composition and Communication
31, 4 (Dec. 1980), 389-401.

Rose's research on the process of composing reveals that writer's block is not so mys-
terious. It often occurs when writers impose premature restrictions on their use of lan-
guage.

54
Technical Writing for Software Engineers SEI-CM-23



. Roundy85

Roundy, Nancy, and Mair, David. Strategies for Technical Communication.
Boston, Mass.: Little, Brown, 1985.

This undergraduate textbook takes an especially comprehensive approach to audience
analysis; the authors chart positions within (or outside of) the organization, and posi-
tions based on "cluster of interest" and egocentrism. There are useful outlines and ma-
trices for analyzing audience characteristics. Writing models are also provided to dem-
onstrate key points.

Schutte83

Schutte, William M., and Steinberg, Erwin R. Communication in Business and
Industry. New York: Holt, Rinehart and Winston, 1983.

The authors provide standard handbook information and more, including coverage of
communication theory, the "climate of business," and special problems in technical and
professional writing. This text is less an undergraduate text than most, and is also
geared to people in business, industry and government. It contains information about
oral communication as well as writing.

Seizer83

Seizer, Jack. "The Composing Process of an Engineer." College Composition
and Communication 34, 2 (May 1983), 178-187.

This classic article considers how Kenneth Nelson, (transportation) engineer, general-
ly writes the kinds of documents that are part of an engineering project: qualifications
statement, proposal, presentation, progress reports, technical memos, and final report.
Nelson's comparatively linear process of composing and his efficient reuse of docu-
mentation is of interest. Seizer was not primarily concerned with correspondences
between engineering and composing, yet he comments on the level of detail in both
Nelson's outlines and his engineering plans. He speculates that planning for documen-
tation comes "naturally to professionals who must plan and coordinate complicated
engineering tasks." He also notes that "The Critical Path Diagram and the Project Task
Flow are remarkably analogous to models of the writing process." The article is both
informative and easy to read. Essential reading for the instructor and recommended for
students.

Shore85

Shore, John. The Sachertorte Algorithm and Other Antidotes to Computer Anxi-
ety. New York: Viking Press, 1985.

This entertaining book looks at programming as a literary activity, as mathematics, and
as architecture. Shore addresses a wide audience, including technical writers, comput-
er novices who need a gentle introduction, and experts who have forgotten home
truths.

55SEI-CM-24 Technicai Writing for Software Engineers



Simon8l

Simon, Herbert A. The Sciences of theArtificial. Cambridge, Mass.: MIT Press,
1981.

Simon's discussion of the science of design is relevant to computer science, software
engineering, and communication. "Design," Simon argues, "is concerned with how
things ought to be, with devising artifacts to attain goals." In addition, the chapter on
"The Psychology of Thinking" shows how the relation between linguistic theories and
information-processing theories of thinking continues to grow closer.

Sommers80

Sommers, Nancy. "Revision Strategies of Student Writers and Experienced

Adult Writers." College Composition and Communication 31 (Dec. 1980),
378-388.

In this article, Sommers argues that revision has not received its due and is inadequate-
ly represented in linear models of the writing process; the possibility of revision "distin-
guishes written text from speech." In her study of student and adult writers, Sommers
notes that students focus on words or phrases. They lack "heuristics to help them reor-
der lines of reasoning or ask questions about their purposes and readers." Experienced
writers. revise at a number of levels to discover and shape meaning. Recommended for
the instructor.

Spilka88

Spilka, Rachel. "Studying Writer-Reader Interactions in the Workplace." The
Technical Writing Teacher 13, 3 (Fall 1988), 208-221.

Abstract: Current models of audience analysis fail to account for writer-reader interactions
in the workplace. Spilka builds a case for studying in-depth such interactions, and she de-
scribes her use of methodological triangulation in a study of corporate engineers' composing
processes. Her results challenge prevalent assumptions about writing for multiple audiences.

This article is supplementary reading for the instructor and its level of detail may make
it most appropriate for those who teach technical writers, not software engineers.
Nonetheless, it is an excellent treatment of writing to multiple audiences. Spilka's chal-
lenges to commonly held assumptions about audience are most interesting. She discov-
ers, for example, that successful corporate engineers try not to write sections of a docu-
ment for any one segment of the audience. They also focus on more (not less) knowl-
edgeable readers, adjust their audience analysis throughout, and try not to analyze
their audience and choose matching strategies on the sole basis of organizational roles.

Strunk79

Strunk, William, Jr., and White, E. B. The Elements of Style. New York: Mac-
millan, 1979.

This handbook includes rules of usage and principles of communication. One drawback
of this book is that the rules of usage are presented in a way that suggests there is clear

5T Technical Writing for Software Engineers SEI-CM-23



right and wrong. The principles of communication are more useful, and examples are
provided. (See [Williams89] for a distinction between the rules that must be followed
and those that are flexible, and [Miller8O] for a general discussion of the concept of
rules.)

Sullivan88

Sullivan, Sarah L. "How Much Time Do Software Professionals Spend Com-
municating?" Computer Personnel 11, 4 (Sept. 1988), 2-5.

This article can be useful for convincing students that software engineers do not work
in isolation, that they need communication skills. Sullivan's focus, however, is primarily
on oral communication.

Taylor82

Taylor, Tamara, and Standish, Thomas A. "Initial Thoughts on Rapid Proto-
typing Techniques." ACM SIGSOFT Software Engineering Notes 7, 5 (Dec.
1982), 160-166.

Abstract: This paper sets some context, raises issues, and provides our initial thinking on the
characteristics of effective rapidprototypingtechniques. After discussing the role rapid proto-
typing techniques can play in the software lifecycle, the paper looks at possible technical ap-
proaches including: heavily parameterized models, reusable software, rapid prototyping lan-
guages, prefabrication techniques for system generation, and reconfigurable test harnesses.
Thispaper concludes that a multi-faceted approach to rapidprototypingtechniques is needed
if we are to address a broad range of applications successfully-no single technical approach
suffices for all potentially desirable applications.

Although the authors are concerned with the rapid development of initial versions of a
system, rapid prototyping is a useful method for developing initial versions of a docu-
ment. Supplementary reading.

TechComm88

Technical Communication 35, 3 (1988).

This issue features three articles on manuals: Gihihan and Herrin's "Evaluating Prod-
uct Manuals for Increased Usability," Huston and Southard's "Organization: The Es-
sential Element in Producing Usable Software Manuals," and Southard's "Practical
Considerations in Formatting Manuals." Each article is an introduction to the topic,
and the three together are useful for the reader trying to gain a general understanding
of issues related to writing manuals. The level of detail is not sufficient a one to di-
rectly apply this information to a particular document, but the references are useful
pointers to more specific discussion.

57SEI-CM-24 Technicai Writing for Software Engineers



Tichy88

Tichy, Henrietta J. Effective Writing For Engineers, Managers, Scientists. New
York: John Wiley, 1988.

This excellent book is more a series of articles than a textbook. Tichy provides common-
sense advice that is appropriate reading for students and teachers. The book also con-
tains sections on usage that can be used as a handbook. Tichy is a pragmatist who
attends to stylistic issues without holding to rules at all costs.

Tufte83

Tufte, Edward R. The Visual Display of Quantitative Information. Cheshire,
Conn.: Graphics Press, 1983.

Tufte provides comprehensive coverage of visual display, with an emphasis on graphs
and charts. He stresses the need to select the most appropriate form for communicat-
ing data, a form that is complete and clear, and is not misleading. Design principles are
presented in this context.

vandeKopple82

vande Kopple, William J. "Functional Sentence Perspective, Composing, and
Reading." College Composition and Communication 33 (Feb. 1982).

This article provides good background information for the instructor; it is not appropri-
ate for students. -

Walton87

Walton, Richard E., and Balestri, Diane. "Writing as a Design Discipline: Ex-
ploring the Relationship Between Composition and Programming." Machine
Mediated Learning 2, 1, 2 (1987), 47-65.

Abstract: Many of the difficulties college freshmen encounter as they write stem from their
misconceptions about the nature of writing In this paper we suggest that linking instruction in
computer programming and composition offers students a new way to understand and to
practice writing as a design discipline. The process of structured computer programming is
much like the process of writingpurposive prose. Both are processes of design: of determining
purpose and audience, ofproblem-solving structuring refining and drafting We describe the
ways in which this insight was applied with positive results to the teaching of writing at two
different institutions, the University of Montana and Bryn Mawr College. The computer is a
powerful tool for interdisciplinary learning and practice of design, but it is not an effective tool
unless used in the context of good instruction

The authors' insights on writing and programming as problem-solving activities are
valuable but, we believe, somewhat limited. By concentrating on the analogy between
writing (a document) and writing a program, Walton and Balestri miss out on larger
correspondences between document and software development. For example, in their
shared design process (Requirements, Design, Draft, Execute) there is no mention of
testing or verification, a crucial procedure, for example, in writing manuals. Even in

5s
Technical Writing for Software Engineers SEI-CM-23



writing expository prose (the subject matter of this article), the (informal) review pro-
cess and the modeling of reader behavior are valuable. The authors' discussion of the
Warnier-Orr diagram as an effective and hierarchical substitute for the traditional out-
line is interesting and also worth juxtaposing with issue trees [Flower89].

Watzman87

Watzman, Suzanne. "Visual Literacy and Document Productivity." Proceed-
ings of the 34th International Technical Communication Conference, May 1987,
ATA48-49.

Abstract: The power of electronic publishing has put its users, the producers of communica-
tions materials, in grave danger of overlooking quality. And those who receive this material
are in even greater danger-of missing the message. Being sensitive to quality ensures that
electronic publishing technology is an asset to you or your organization. In an environment
overloaded with a vast quantity ofinformation, increasing information quality becomes cru-
cial. The new technological tools we have access to are valuable only if applied appropriately.
Effective communications materials require a unique combination of technological tools,
content, and design to meet their objectives. Information design supplies the essentials for you
to helo readers get more out of your communications.

This article emphasizes simplicity and suggests "visual structuring techniques" that
make information easily accessible to the reader.

Weizenbaum88

0 Weizenbaum, Joseph. "The Computer is a Mythconstrued Machine." Technol-
og, Review 91, 8 (Nov. 1988), 2-4.

A short but philosophical piece which, on several occasions, raises the issue of literacy
by way of considering myths about computers. Of interest is the discussion on the com-
puter as merely a tool since writing is frequently perceived in the same neutral manner.
This article should prompt discussion on tools, ethics, and what Weizenbaum calls the
"principal end use" of work.

Williams89

Williams, Joseph M. Style: Ten Lessons in Clarity and Grace. Glenview, Illinois:
Scott, Foresman and Company, 1989.

This sophisticated but understandable style guide is recommended reading for teachers
and students alike; it is practical and provides good examples. And Williams does more
than provide guidelines-he explains the underlying principles and gives advice about
when to follow and when to ignore a rule. The book ends with a section called "Reason-
able Punctuation."

Wright83

Wright, Patricia. "Manual Dexterity: A User-Oriented Approach To Creating
Computer Documentation." Human Factors in Computing Systems, CHI '83
Conference Proceedings, Dec. 1983, 12-15.

59
SEI-CM-24 Technical Writing for Software Engineers



Abstract: This paper will not advocate a list offirm recommendations about document design
because it is recognized that design decisions will vary with many factors. Instead, the present
discussion will emphasize that when making these decisions it is necessary for designers to
take account ofhow readers will use the information provided. In order to help them do this, a
simple framework is proposed which outlines the rudiments ofhow people interact with tech-
nical documents. The advantages of this framework will be illustrated by using it to motivate
design decisions at two decision levels. At a "macro "level the document designer must make
broad decisions about the contents and format of the manual. At a "micro "level the designer
must select particular combinations of linguistic, graphic and typographic options which will
help readers locate, understand, and implement the information given in the manual.

Wright identifies three common reader activities-searching, understanding, and
applying-and considers the implications of these activities for document design. For
example, she discusses how the reader's deliberate choice not to read or the reader's
practice of leafing through a document should prompt document designers to appreci-
ate the "search component" and provide better "access structures." An excellent ar-
ticle on the connections between testing, usability, and design. The bibliography pro-
vides follow-on readings. Essential for instructor and students.

Also published as a special issue of the Special Interest Group on Computer and Human
Interaction (SIGC) Bulletin, ACM, 1983.

Young70

Young, Richard E., Becker, Alton L., and Pike, Kenneth L. Rhetoric: Discovery
and Change. New York: Harcourt, Brace, 1970.

This unusual text reflects the interests of its authors, who come from three disciplines:
rhetoric, anthropology, and linguistics. The discussions on inquiry (problem solving)
and interpretation (shared expectations) reinforce the cognitive and cultural elements
of language use. The book is known especially for its "tagmemic grid," a heuristic based
on viewing experiences as particles, waves, and fields.

Young80

Young, Richard E. 'Arts, Crafts, Gifts, and Knacks: Some Disharmonies in the
New Rhetoric." Visible Language 14, 4 (1980), 341-350.

Young addresses the limitations, especially pedagogical, that come from seeing writing
as mechanical/grammatical or magical. This is an interesting article to read with
Hoare's "Programming: Sorcery or Science?" [Hoare84]. Both Hoare and Young at-
tend to craftlike, magical, and scientific properties of these two activities-program-
ming and writing.

This paper appears in Reinventing the Rhetorical Tradition, ed. A. Freedman and I.
Pringle, L&S Books for the Canadian Council of Teachers of English, 1980. A version is
also available as "Concepts of Art and the Teaching of Writing" in The Rhetorical Tradi-
tion and Modem Writing, ed. J. J. Murphy, New York: Modern Language Association of
America, 1982.

60
Technical Writing for Software Engineers SEI-CM-23



REPORT DOCUMENTATION PAGE
I. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2.. SECURITY CLASSIFICATION AUTHORITY 3. OISTAI SUTIONIAVAI LABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2t. DECLASSIFICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

14. P90RFOAMING ORGANIZATION REPORT NUME(S) S. MONITORING ORGANIZATION REPORT NUMER(S)

SEI-CM-23

6.NAME OF PER FORMING ORGANIZATION 6,b OFFICE SYMBO0L 7a. NAME OF MONITORING ORGANIZATION
( if applicble)

SOFTWARE ENGINEERING INST. jSEI SEI JOINT PROGRAM OFFICE

GA OESS (City. Sl4t* wid ZIP Code) 7b. AOORESS (Clty. Slat and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

____ ____ ____ ____ ___ ___ ____ ____ __ AN~rQM_ MA QlI711

S&. NAME OF PUNOINGISPONSORING (Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER
ORGANIZATION (it appliceble)

SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962890CO003
ft. AORIESS (City. State and ZIP Codej 10. SOURCE OF FUNOING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNI.

PITTSBURGH, PA 15213 ELEMENT NO. NO O. NO.

It. TITLE (include Secunsty Ciawiflcetaonj 35FNI / /
TechnicalWriting for SoftwareEngineers _______________________

12. PERSONAL AUTI4OR(S)
Linida Levine, Linda H. Pesante, Susan B. Dunkle.

13& TYPE Of REPORT 131L TIME COVERED 14. DATE OF REPORT (Yr. M71. Daty) IS. IPAGE COUNT

VTWAT, FROM _ TO May 1990 60 pp.
14L SUPPLEMENTARY NO0TATION

17. COSATI COOES IL. SUBJECT TEAMS IXon tiue on 'vi',,' if naceasary andi idenjit'y by block numberl
FIELD GROUP sum. GA. .- programming & writing documentation8 (R<\ writing process

software engineering & writing
technical vriting

t.ABSTRACT (Cofllini~w an mmwwu fu n d.tf yboknibl
) This module, which is d elte specifically to software enginees i se h rtn
process in the context 4f sotae engineering. Its focus is on the basic problem-solving
activities that underli effecttive writing, many of which are similar to those underlying
software development, he module draws on related work in a number of disciplines,
including rhetorical the ory, discourse analysis, linguistics, and document design. It
suggests techniques for becoming'an effective writer and offers criteria for evaluating
writing.

20. DISTRIGUTIONIAVAILAGILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIP14OIUNLIIMITED j3 SAME AS APT. 0 OTIC USERS C3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
22& NAME OF RESPOkSIBLE INDIVIDUAL I22b. TELEPI4ONE NUMBER 2c FIESMO

L4ARL H. SHINGLER j (Includir A ova Codt..IC YMO

____________________ 412 268-7630 _P0 _



* The Software Engineering Institute (SEI) Is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United State. Department of Defense.

The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) Identifies and outlines the content of a specific topic area, and is Intended to be
used by an instructor In designing a course. A support materials pacage (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials pacage (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of tieme materials In a course does not In any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United~ tAstes government.

SEI curriculum modules, support materials, and educational materials may be copied or incorporated into other materials,
but not for profit, provided that appropriate credit is given to the SEI and to the original author of the materials.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project. Software Engineering Institute, Carnegie Melon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriclum Modules I' Suppr Maerlls avallIle) Educational Materials

GM-i (superseded by CM-i101 EM-i Software Mintenance Exerdses for a Software
CM-2 intodation to Schwan Design Engineerbi Project Course
CM-3 The Softwae Techncl Rewiw Prces EM-2 APSE Interacive Monto: An Arifact for Softwane
CM-4 Software Coolguiraon Mnagemenr Eniern Eductioni
CM-B Infonnadon Protection
CM.6 Sofhwane Sty. CM-7 Assurance of Scfhware Olut
CM-8 Formal Speclcelon of SaliwW.
CM-B Unit Testikg and Analysis
CM-10 Models of Shwa Evolution- I.1 Cycle anid Process
CM-li1 Software Speclladons: A FRamewo
CM-12 Softwae Metrics
CM-13 Invocducionilg teSftmVeilkiatlon mid Valddn
CM-14 intelecua Property Protection for Sfae
CM-15 Software Development and Licensing Contacts
CM-16 Sofhware Development Using VDM
CM-17 User Interface Developmerwr
CM-la (supersedd by CM-231
CM-19 SoNINm ReqAme1NNs
CM-20 Formal Veriliaon of Progrus
CM-21 Software Projec Management
CM-22 Softwmr Desip Mehods for Rel-Thm Systems
CM-23 Technical Witling for SofIrem-Engir
CM-24 Concepts of Cormnts Pmgsmbig
CM-26 Language and System Support lor Concuret

Progrmming*


